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1 Introduction

I’ll start with a question about the world we live in and we will arrive at some mathematical state-
ments. Consider a planet, like Earth, in roughly circular orbit around a star, like our Sun. If we move
the plane to an orbit further away (like if Earth-Sun radius was greater than it really is), it would have
more total energy. Naively you might say that it should have less energy because of the idea that the
further away it is, the lesser the influence the gravitational pull of the star should have on the planet.
The idea that distance decreases influence is correct, but it does not automatically imply the total
energy is higher, since there is both potential energy due to the gravitational pull, and kinetic energy
associated with the motion around the star. Newton’s law of gravitation is

F = G
Mm

r2

where G is a constant of nature, M is the star’s mass (heavy), and m is the planet’s mass (light). The
potential energy associated with this force is given by the work1 associated with bringing a planet in
from infinity to a position r, if the star is at the origin:

Epot =

∫ ∞
r

G
Mm

r2
r̂ • dr =

[
GMm

r

]∞
r

= −GMm

r

where r̂ = r/|r|, and I conventionally fixed the integration constant Epot(r = ∞) = 0. Gravitational
potential energy is negative: if we plot −1/r it looks like a slope inwards, not outwards as would have
been the case for +1/r. Why is this correct? Gravity is a conservative force: it is the negative of the
gradient of potential energy, F = −~∇Epot, like for a ball on a hill; the force is down the hill. As
explained in the previous link, a force being conservative implies that work done by that force is
path-independent, i.e. given by a “height function”, which is what potential energy is all about; we
can translate any conservative dynamics to intuitive situations with balls rolling/sliding on (possibly
higher-dimensional) surfaces. So we can picture a ball rolling along a hill described by the graph of
−1/r: the ball “rolls” inwards, which means the planet wants to fall into the star. In fact, the Sun
pulls on the Earth with a huge force, so why don’t we fall into the Sun?

This is often confusing to non-physicists in the context of man-made satellites, why doesn’t the
International Space Station fall to the ground? If a satellite is launched with some component of
orbital velocity along the surface, it doesn’t fall back down for the same reason that the Earth doesn’t
fall into the sun; it’s in free fall, but it has a “sideways” velocity due to the initial condition of how
it was sent up. In fact, it’s easy to see that when a planet has an initial velocity component that
is “only sideways” (i.e. perpendicular to a line between the star and the planet), there can exist
stable circular orbits. In high school physics, one uses the centripetal force F = mv2/r for circular
orbits (ṙ = dr/dt = 0) one finds a balance equation2 mv2/r = GMm/r giving the orbital velocity as

1Work W is a kind of energy, defined slightly differently in different parts of physics. In mechanics, a small amount
of work carried out by a force F acting over a distance dx is given by dW = F • dx. In thermodynamics, work is (often,
but not always) defined as the energy transfer that is not associated with a temperature gradient, and a typical example is
the cost in energy of changing a volume under fixed pressure dW = PdV . If volume of a fluid is compressed by a force
pushing on one of the faces of a cube, dV = Adx, and we recall that pressure P is force F per unit of area, it is easy to see
that these two concepts of “work” are equivalent.

2The equation mv2/r = GMm/r is really only a “balance” between one force pushing and one force pulling if we
use the language of centrifugal force. Then, centrifugal “pushes outwards” and gravity pulls inwards. This language is
not often used in high school; there one would prefer to say that gravity provides the centripetal force, and there is no
centrifugal force. Since as I discussed in an earlier footnote, the difference amounts to moving a term from the right-hand
side of F = ma to the left-hand side, the two descriptions are just different language for the same thing. This is used to
great effect in this xkcd cartoon.
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v2 = GM/r. The energy from motion (kinetic energy) is given by Ekin = 1
2mv

2 where m is mass and
v = |v| is speed, so total energy Etot is

Etot = Ekin + Epot =
1

2
mv2 −GMm

r
=

1

2
m ·GM

r
−GMm

r
= −GMm

2r
=: Epot,eff

where I introduced the name “effective potential energy” Epot,eff for this quantity, which is just the
total energy here. In the next section, the effective potential energy will not be the total energy. We
see that indeed, if radius r increases, then energy Etot increases, as promised above.

By the way, I assumed above that you’ve seen Ekin = 1
2mv

2 before, but it follows trivially from
Newton’s 2nd law F = ma for constant mass m that

Ekin =

∫
F dx =

∫
madx = m

∫
v dv =

1

2
mv2 (1.1)

where I used the definitions of velocity and acceleration: v = dx/dt and a = dv/dt, and “eliminating
dt” between them gives a dx = v dv. As usual in physics, the intermediate steps take a little more
work to make precise, but everyone’s happy with the answer!

2 From high school physics to undergraduate calculus

So much for high-school physics. Let’s pick apart the simple picture from the previous section. Isn’t it
surprising that by force balance, the orbital velocity v is completely determined by the radius r? The
velocity is the same for all circular orbits at that radius. But in other basic mechanics problems, like
if we throw a ball, we get to pick whatever velocity we want. Velocity being determined by position
must be special to this “binding” of the planet to the star. And in fact, it holds to good approximation
for our particular planet Earth around our particular star the Sun, which is why it’s a decent high-
school physics problem! But as Johannes Kepler showed, already in the 1600s astronomy data was
getting good enough to make it clear that circular orbits are a good but not great approximation:
planets move on ellipses, with the Sun at one of the focal points. Surely in the scientific education of
our students we should make it at least past the 1600s.

Determining the orbits is called the “Kepler problem”. Solving it straight away is a common
exercise in vector calculus courses, but we will use a faster and more instructive way: the effective
potential method. Let’s assume motion in a plane (and later evaluate this assumption: it will turn out
to be a good assumption). We break up the velocity in one component perpendicular to the radial
vector, that we call vθ, and another parallel to it, which we call vr. For the circular orbit, we had
vθ = v and vr = 0.

r
θ

The component vθ = rdθ/dt. Here dθ/dt is the angular velocity, radians traversed per unit of time, so
to get distance per unit of time vθ, we need to multiply by r, how far out we are3. Now we make use of
an important concept: conservation of angular momentum L = r×mv (see below for more details). The
magnitude of angular momentum is L = |r×mv| = mvθr (since the radial component vr is along r,
it drops out of the cross product), so if L is conserved, i.e. constant in time, it is useful to express vθ
in the constant L and the variable r:

Ekin =
1

2
mv2 =

1

2
mv2

r +
1

2
mv2

θ =
1

2
mv2

r +
L2

2mr2
. (2.1)

3To get a sense of this, consider this page. For example dθ/dt = 2 · 10−7 rad/s for the Earth (trick question: how many
times do we go around per year?), and a washing machine spin cycle is around dθ/dt = 100 rad/s, about 15 Hz.
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Here, we were unable to reduce kinetic energy to depend on just position r, as we did for the circular
orbit. But we have reduced the problem to expressing it exclusively in terms of radial motion, even
though for L 6= 0, the motion is not purely radial: vθ 6= 0. Following the logic for the circular orbit,
we will shuffle L2/2mr2 to Epot,eff and only keep 1

2mv
2
r in Ekin,r:

Etot = Ekin + Epot =

(
1

2
mv2

r +
L2

2mr2

)
− GMm

r
=

1

2
mv2

r︸ ︷︷ ︸
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+

(
−GMm

r
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2mr2

)
︸ ︷︷ ︸

Epot,eff

(2.2)

It’s instructive to plot Epot,eff as a function of r for some values of the constants G, M , m and L. For
small r (“tight” orbits), the L2/(2mr2) term dominates if L 6= 0, and because L2/(2mr2) is positive
for small r (higher “energy cost”), this will tend to prevent r from becoming too small. This is called
the “centrifugal barrier”, i.e. it effectively constitutes a “barrier” to the Earth falling into the Sun.
Phew!

3 Mathematics of centripetal force and angular momentum

By the way, the physics-flavored discussion above is given in slightly more mathematical-sounding
terms on Wikipedia. Let me express the connection to mathematics in my preferred words. The cen-
tripetal acceleration a = v2/r follows from the product rule applied to polar coordinates (r̂(t), θ̂(t))
in the plane, that move along with the particle in time, as I derive in this video (in Swedish). In polar
coordinates, Newton’s 2nd law becomes Fr = mr̈ + mv2/r, and the mv2/r term is the centripetal
term, from petere, “seeking” (the center). It can be reinterpreted as centrifugal force (from fugare, i.e.
fleeing from center) by moving it to the other side of F = ma, simply writing F −mv2/r = mr̈. The
left-hand side is no longer a “force” in the usual sense, the centrifugal force is called a “fictitious”
force, but it’s just the result of using an accelerated (non-inertial) coordinate system, as made precise
in “Fermi-Walker derivatives”, somewhat related to Fermi coordinates (as in e.g. Do Carmo’s differ-
ential geometry book). It’s the same physicist Enrico Fermi in both cases: he was in contact with
mathematicians in Rome like Levi-Civita and they mentioned his work in their books.4

What does it mean mathematically that angular momentum L = r × mv is conserved? Take
as example the flow of the vector field X = (−y, x) in Cartesian coordinates. (I discuss flows in
my video Dynamical systems.) Flow lines traced out by this vector field (use e.g. VectorPlot in
Mathematica or fieldplot in Maple) are circles in the plane, so this vector field is an infinitesimal
generator of rotational flow.

4It helps to be aware that in the 1920s, when Fermi was young, the theory of relativity was not yet accepted in Italy
(nor in many other places), so as discussed in a recent Fermi biography, for his papers on relativity he interacted mainly
with mathematicians, not with physicists. The mathematicians were apparently quite interested in relativity; I had naively
thought that Tullio Levi-Civita was several generations before Albert Einstein, but in fact they were contemporary. Levi-
Civitas supervisor, the Ricci of the Ricci tensor, was the generation before. Anyway, perhaps this is an indication that
mathematicians sometimes somehow know what physics will become useful in the future, so we should keep in touch?
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Writing out the cross product L = r ×mv, my example flow X = (−y, x) is the z vector component
of the angular momentum (by “vector component” I mean both the coefficient and the basis vector
— the vector L points out of the xy plane, but this is just the axis that we rotate around, not the
direction of flow). In physics, having a vector field along which nothing varies is called a symmetry,
which by Noether’s theorem leads to a conservation law, i.e. nothing changes with some quantity as
we evolve in time. In three dimensions, the Lie group of rotational symmetry is SO(3), with Lie
algebra so(3) ' su(2). This has 3 generators: the components of L. Whether L is conserved depends
on the problem, for example it depends on the specific expression of the energy in terms of velocities
and positions. It be checked by Poisson bracket calculations that if H is energy, {H,L} = 0 means
L is conserved. And since L generates rotation, one way to guarantee {H,L} = 0 would be if H is
rotationally invariant, which it was above, but it’s good to check this. The details are discussed for
example on p.95 of Tong’s lectures.

While some of the comments above may be helpful to mathematicians, a physics student might
be completely lost in this section, so let me summarize. The Kepler problem is rotationally symmetric
in the sense that the energy (Hamiltonian function H) can be expressed entirely as H(r, vr) without
reference to θ and vθ. This aspect of our formulation of the Kepler problem of finding planetary orbits
due to gravity leads to a set of conserved (time-independent) quantities. In differential geometry, this
could be expressed by saying that our dynamics can be foliated by this Lie symmetry group to take
place only in a fixed leaf – an integral manifold of the foliation by L. We will return to foliations later.

4 Solution of the two-body Kepler problem

The chain rule says
dr

dθ
=
dr/dt

dθ/dt
=

vr
L/(mr2)

(4.1)

since vθ = rdθ/dt and L = mvθr. From the previous section, we can solve for vr to find

dr
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=

√
2(Etot+

GMm
r
− L2

2mr2 )

m

L
mr2

=
r2

L

√
2m

(
Etot +

GMm

r
− L2

2mr2

)
(4.2)

which is a nonlinear ordinary differential equation of 1st order for the trajectory r(θ). This can eas-
ily be solved exactly using some symbolic manipulation software (see e.g. my Maple file “Classical
Mechanics 2: Kepler”). The solutions are simply conic sections. The eccentricity e of the section is

e =

√
1 +

2EtotL2

G2M2m3
(4.3)

There is a special case e = 0 (perfect circular orbit), but this requires the Etot term to sufficiently
negative that it perfectly cancels the “1”. Except for that very special case, we have 0 ≤ e ≤ 1. Some
examples are given here: e =0.0167 for Earth, e =0.0549 for Moon around Earth, e =0.2488 for Pluto.

Exercise: For example in the Earth-Moon system, the orbital velocity is easy to remember, it’s
about vθ = 1 km/s. At which radius r is there a stable orbit ṙ = dr/dt = 0? Does the circular-
orbit approximation work well?

If radial kinetic energy is greater than the effective potential energy, Etot > 0, then we find e > 1.
This is not a bound orbit at all; it’s a “scattering” motion, in the sense that the planet is “scattered” or
deflected, instead of bound to the star. At the crossing point e = 1 this trajectory is a parabola, and
generically e > 1 is a hyperbola. One of Newton’s big motivations was to understand the motion of
comets, in particular Halley’s comet, that has eccentricity e = 0.9671.

Exercise: If Halley’s comet has e < 1, is it a scattering trajectory or not?
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Similarly, the Messier catalog in astronomy was set up to make sure people would not confuse comets
– clearly the interesting things! – with annoying little clouds in the background, many of which are
now known to be other galaxies. It’s curious that the tables have turned; most of us now find galaxies
much more interesting than comets. (Or at least until a comet is found to be on a collision orbit.)

Here is a Kepler orbit from my Maple worksheets:

To get a feeling for the solutions of differential equations, there is nothing quite like playing around
with them in symbolic manipulation software like Maple or Mathematica or Sage.

5 More on Newton and Halley

A "killer app" of Newton’s theory of gravity was the prediction of when Halley’s comet would return.
The appearance of comets was still by many considered a sign from God, as in its depiction on the
Bayeux Tapestry.

A photo of Halley’s comet on its last turn around here in 1986

The following story is not uncommon in theoretical physics. Newton was himself initially unable
to compute the answer using his own theory. In 1705, Halley made a rough computation where
he predicted that the coment that would bear his name would return in 1758.5 The comet finally
returned on December 25, 1758, roughly confirming Halley’s prediction. Surely this was one of the
great scientific achievements of this era. But in 1758, both Newton and Halley had passed away.

(Of course, nowadays some of these things can be calculated at the level of seconds, if people
want to, like the recent North America total eclipse. Which, if you think about it, is mind-blowing.)

Here’s a little mystery posed by the arguments above: none of the conic sections represents some-
thing that is “almost captured”: why couldn’t a comet circle around the Earth a few times, then fly
away? Let’s get back to that before a slight detour.

5To be clear, the zeroth order approximation of the comet orbit time was inferred from observation to be about 74-79
years. What Newton and Halley were concerned with was calculating effects of perturbations from the other planets, i.e.
three-body or many-body problems, to eventually predict not just the exact year but even the exact month.
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6 Atomic physics

If you replace gravity with electric force, the Kepler system can be proton/electron, i.e. the hydrogen
atom. Did you ever wonder why the periodic table of the elements is the way it is, in particular how
its periodicity arises, in detail? For example, the top row only has 2 elements (hydrogen, helium)
before it goes to the next row, but then it has more elements per row. Using the intuition about planets
above, we can immediately guess that electrons in our typical model of an atom have more energy
if they are “higher up” in some classical-physics sense. (Electrons are not described by classical but
quantum mechanics, where we call the orbits “shells”, since the generalization of orbits to quantum
mechanics has some “fuzziness”, or “thickness” due to Heisenberg’s uncertainty relation. This will
be important in a moment, but initially let’s think of a “shell” as a classical orbits, as was done in
precursors of quantum mechanics.)

Indeed, an excited atom (where an electron has received energy that “knocked it up” to a higher
“orbit”, for example by heating a gas of atoms) can decay by emitting energy in the form of photons,
particles of light, i.e. electromagnetic energy. Such photons only come in particular sets of energies
associated with a particular element, the spectral lines of that element. (In a good high school physics
program, students study these spectral lines themselves from heating a gas and studying the light
it emits.). Spectroscopy is the study of these spectral lines, which has a huge range of applications,
often having to do with the “quantized” nature of spectral lines. Here quantized means it comes in
predetermined packets of energy, or quanta, which we ordinarily call “particles”, like photons, the
particles of light.

The “quantum” of quantum mechanics means that energy just comes in fixed-size packets. For
example, every photon of green light has the same energy, Planck’s constant h times the speed of
light divided by wavelength, E = hc/λ. If energies of photons emitted from excited atoms could
vary continuously (as in classical physics), there would be a continuous emission of any color, but
this is not what happens: our high-school students see that nature has provided each element with
an almost-unique fingerprint of a specific set of spectral lines, corresponding to the emission of elec-
trons between specific and calculable electron shells (“planet orbits”). Examples of applications of
spectroscopy of elements (some of which are mentioned in the link above) are: detecting the expan-
sion of the universe by measuring how much spectral lines in light emitted by a faraway galaxy
are shifted (redshift), checking the chemical composition of pharmaceutical drugs, or monitoring the
construction of computer chips.

Finally, the periodic system. In quantum mechanics the magnitude-squared of the angular mo-
mentum of the orbit can only take the values L2 = `(` + 1), where ` is integer, in units of Planck’s
constant ~. (You should ask: why? See below.) From the Kepler orbits, we expect that L is conserved,
but just like for the Kepler orbits there should be some “foliation” of the dynamics labelled by the
value of a conserved quantity, like changing the total energy Etot. And in fact, for each value of the
total energy the component Lz of orbital angular momentum along some axis z should be −` to `,
but only in integer steps. There are 2`+ 1 possible such values, so we have∑

`

(2`+ 1) = 1 + 3 + 5 = 32 . (6.1)

It is almost correct that there are n2 = 1, 4, 9, . . . electron states per atomic shell in the periodic table,
but not quite: the correct result in the actual periodic table is that there are twice as many, i.e.

2n2 = 2, 8, 18, . . . (6.2)

electrons per shell.

7 The mathematics behind both Kepler orbits and atomic physics

• Where did the factor of 2 in number of electrons per atomic shell come from?
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• Why was the angular momentum L given as `(`+ 1) for integer `?

• In the Kepler problem, why couldn’t a comet be “almost captured”: circle around the Earth a
few times, then fly away?

It is a nice example of the unity of physics that these questions are all related. The mathematical
symmetry group of rotations in three dimensions can be expressed in terms of the Lie group SO(3),
that I brought up above. The covering group of SO(3) is the special unitary group SU(2). There
is a 2-to-1 map from SU(2) to SO(3) (by the antipodal projection), so for each vector acted upon by
SO(3), there are two objects acted upon by SU(2), called spinors. They are said to represent “spin-1/2”
particles, such as electrons.6 This “doubling” in going to the covering group means that each of the
states of orbital angular momentum also has a spin state (that we can call “up” and “down” relative
to some axis). So the number of states per shell is not just n2 as we got just from counting states of
angular momentum labelled by L2 and Lz , but double that: 2n2 due to spin.

Actually, it was noticed long before quantum mechanics that `(` + 1) for integer ` is just the
eigenvalue of the square of the angular part of the Laplace equation in spherical coordinates: again a
classical differential equation. It’s only the interpretation that is new in quantum mechanics. Legen-
dre’s reason it was useful to take the form `(`+1) for integer ` is that only then, the angular ODE from
separation of variables of the Laplace equation become finite at the north and south pole θ = ±π, i.e.
at cos θ = ±1. The angular solutions are the spherical harmonics Y`m(θ, φ), constructed in terms of
Legendre polynomials P`, and P`(±1) = 0, in the convention of Legendre. But this is a very limited
way to think of a generally useful idea. A perhaps more modern way to think of this is to say that
`(` + 1) is the Casimir of the Lie algebra so(3). This in itself is a mathematical result in Lie algebra
that is not directly related to quantum mechanics – but it fits together beautifully!

Finally, what about that “almost captured” comet? This inexorably leads us to back to foliations,
that I brought up above. Let’s first take the simpler system of a pendulum with energy approximately
Etot = 1

2mv
2 + 1

2kx
2 for some constant k, that I briefly discuss in my video Dynamical systems. In

some units this is just H = ṽ2 + x̃2, where I introduced H for “Hamiltonian”, or the analog of
energy, in these units. Drop the tildes and plot this surface as a graph H(x, v) in 3 dimensions, and
slice this by planes H = constant. We obtain the ellipse I claimed in the video7. The ellipse is, of
course, a 1-dimensional curve, and for each value of H there is one such ellipse. Motion takes place
entirely in that ellipse, so it is an integral manifold of the problem, and the surface H = v2 + x2 is
foliated by level sets of H , i.e. every point on the surface does belong to a level set.8 Similarly, we
can view the original Kepler problem as taking place in the plane, but after using conservation of L,
the 2-dimensional motion in the plane is completely determined by 1-dimensional motion in the r-
direction. Physically, there is of course still motion in the θ-direction, the extreme case being circular
motion (only motion in the θ-direction). But the θ-motion follows easily once we have determined
the motion in the r-direction using the effective potential method, so for the purpose of solving for
the orbit, we can think of θ-motion in this problem as a simple afterthought.

Here’s the point of this discussion. For the Earth-Sun problem (Kepler two-body problem), we
have as Hamiltonian H(r, θ, vr, vθ) the total energy Etot above, picking some values for G, m, M or
adjusting units suitably. We immediately notice that H is actually independent of θ in this problem,
so let’s ignore it and write H(r, vr, vθ). If we didn’t know better, following the pendulum example I

6In fact all “matter” particles are spin-1/2, i.e. also quarks (the particles that build up protons and neutrons), neutrinos,
and so on. The force-carrying particles like photons and the W/Z and gluon particles are spin-1, which means they are
represented by ordinary vectors, but to be precise vectors of the Lorentz group SO(3,1), not just the rotation group SO(3).
And while trying to be a little bit more precise, in a relativistic theory the spinors belong to a covering group of SO(3,1),
not of a covering group of SO(3). This is particular important for the photon and gluon, that are massless (lightlike) and
cannot be understood purely in terms of SO(3). This covering group is in fact called Spin(3,1), for spinors.

7Actually, as discussed nicely by Tong, if you push the pendulum so hard it rotates a full revolution, the path in phase
plane is no longer an ellipse. But let’s ignore this case for now; the usual idea of a pendulum it just swings back and forth.

8Notice, by the way, that if we consider just the space coordinate x and not the velocity v, the pendulum trajectory
momentarily stops every time it turns, i.e. is not a regular parametrized curve. In the “lift” x 7→ (x, v), motion along the
ellipse still self-intersects when it has gone through a full period, but at least it never stops.
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just discussed, we could try to think of H(r, vr, vθ) as a 3-dimensional surface in R4. But this sounds
more complicated than what we saw in the actual Kepler orbits: they are just conic sections, that are
controlled by the single parameter e, the eccentricity. Why couldn’t they self-intersect, for example?
In other words, why can’t a comet be “almost captured”, circle around the Earth a few times, then fly
away? Even the pendulum’s trajectory is allowed to self-intersect in space.

What we really did in the effective potential method was to foliate by both H and L. We imagined
L given and fixed, we no longer wrote vθ explicitly. Here’s a warning when thinking about this:
H does depend on vθ, and vθ is not constant! But the combination L = mvθr is constant so ṙ 6= 0
implies θ̇ 6= 0; the planet goes faster near the star. That’s why we talk about level sets and all this;
what we are doing geometrically is fixing L and picking coordinates along the curve vθr = constant,
not just ignoring vθ. (As opposed to the angle θ itself, that never appeared at all due to rotational
symmetry.) For dynamics taking place in a level set L =constant, we are down to H(r, vr). We can
now draw this as a 2-dimensional surface in R3, as for the pendulum above. But in fact, this system
has an additional “hidden symmetry”, that was famously used by Pauli in his 1926 calculation of the
spectrum of hydrogen-like atoms, precisely because he was aware of this discussion in the Kepler
problem. We already said that in three dimensions, the group of symmetries is SO(3), with Lie algebra
so(3) ' su(2); there is an su(2) Lie algebra symmetry generated by L. But there is another su(2),
that comes from the existence of another non-obvious conserved quantity: the Laplace-Runge-Lenz
vector:

A = p× L− µr̂ (7.1)

where µ is a mass parameter, the strength of the central force (gravity for Newton and electromag-
netic force for Pauli). This can be checked by calculating the Poisson bracket {H,Ai} for each com-
ponent of the vector A. In fact, there is a Lie algebra isomorphism so(4) ' su(2) × su(2), so this is
sometimes expressed as saying the symmetry is “enhanced from SO(3) to SO(4)”. This is discussed
further on the above page about the Laplace-Runge-Lenz (LRL) vector, and in most masters-level
physics books on classical mechanics, like Goldstein or Fetter-Walecka.

The attempts above to think of classical mechanics geometrically in terms of foliations lead to
interesting ideas like the moment map. I was aware of this in mathematics for quite a while before
realizing that “moment” in “moment map” is just short for angular momentum, as above. This set of
ideas is sometimes called geometric mechanics.

When considering 3-vectors, we also see that if the whole vector L is conserved and not just its
magnitude L2, the position of the plane of motion is also conserved. So it was a reasonable assump-
tion in the two-body problem of Earth and Sun (or Moon and Earth) that the motion took place in a
plane that does not change as time goes by. An important question is what happens to conservation
of L and A when the influence of other bodies (e.g Earth-Sun-Jupiter, or Earth-Moon-satellite) is taken
into account, making a three-body problem. The potential surface of a three-body problem for the
motion of a light particle in the presence of two heavy sources can look like in my Maple worksheet
on motion on surfaces (discussed briefly in the aforementioned video):

where I made the potential go down at infinity for easier viewing, and I drew the “hills” green and
added a blue “water surface” for reference, but the particle can roll through the water effortlessly.
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https://link.springer.com/article/10.1007%2FBF01450175
https://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector
https://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector
https://www.amazon.com/Classical-Mechanics-3rd-Herbert-Goldstein/dp/0201657023
https://www.amazon.com/Theoretical-Mechanics-Particles-Continua-Physics/dp/0486432610
https://en.wikipedia.org/wiki/Moment_map
https://en.wikipedia.org/wiki/Geometric_mechanics


Again, taking Maple or Mathematica and playing around with initial conditions of differential equa-
tions of motion is not only instructive but lots of fun: it took me a while to get the particle to loop
around between the masses as many times as in the picture, but it was fun (in the same way that
throwing darts at a board is fun). This particle, if we think of it as a comet, can indeed be almost
captured. If instead of just rolling the particle around the inner part of the surface as in the picture
above, I throw the particle in from the outside, it can come in and circle the two heavy masses a
number of times and then leave. Try concocting a potential like this and try it yourself! This kind of
dynamics actually has direct application in astrophysics, like in the Roche lobe of binary star systems
out there in the real universe.

The green hills and blue water above was also a subliminal message to get you to read Maxwell’s
paper On Hills and Dales from 1870, and perhaps to the modern version in Morse theory (which
was later used to great effect in quantum field theory, by Witten and others), and from there the role
of topology in governing the solutions of differential equations, the most powerful example being
index theorems.

Finally, in this three-body problem, in general conservation of L and A will not both hold, but
some combination of them might still be conserved. A nice discussion of this is given in the following
quantum chemistry (!) paper:
C.A. Coulson, A. Joseph, “A constant of the motion for the two-centre Kepler problem” (1967),
Int.J.Quant.Chem 1, 337-347.
Again we see the unity not only of physics but of science as a whole: the Kepler problem is of
relevance to atomic physics, and hence to chemistry.
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https://en.wikipedia.org/wiki/Roche_lobe
https://www.tandfonline.com/doi/abs/10.1080/14786447008640422?journalCode=tphm15
https://en.wikipedia.org/wiki/Morse_theory
https://en.wikipedia.org/wiki/Atiyah%E2%80%93Singer_index_theorem
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560010405
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