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1 Semiclassical Vector Addition

This is an attempt at unpacking a few concepts about angular momentum addition from Ch. 3.8

(2nd ed, that’s 3.7 in 1st ed) of Sakurai. This came up when discussing the interaction between the

proton spin and the electron spin, that gives rise to hyperfine structure and the 21 cm spectral line.

1.1 General comments

The semiclassical picture is wildly untrustworthy when the uncertainty is on the order of the mean

value. This is the point of the somewhat unwieldy “cone” picture,

where the direction of a spin pointing in the z direction is very uncertain in the xy plane. The z

component of that spin is ±h̄/2, but because it’s pointing along a cone (which turns out to have 45

degrees opening angle, if you plug in the numbers), the length of this “semiclassical vector”, which

of course includes the x and y components, needs to be more than h̄/2. In other words, although

the uncertainty relation tells you that you can’t know the x and y components if you know the z

component, you can know the combination S2
x + S2

y , because it’s S2 − S2
z , and S2 and Sz commute.

(Contrast uncertainties of x and p, that can have mean values 〈x〉 and 〈p〉, the ones we interpret

semiclassically as position and momentum, that are enormous by atomic proportions, compared to

their uncertainties ∆x =
√
〈x2〉 − 〈x〉2 and ∆p =

√
〈p2〉 − 〈p〉2. Think of a normal distribution:

there is nothing wrong with having a big mean and a small spread, or a spread that’s comparable

to the mean, they’re just different.)

1.2 Warmup: eigenvalues for a single spin

Let us use the standard z-direction basis |ms〉 (if you want you can write |s,ms〉, but for a single spin

the s is superfluous, since s = 1/2 both for up and down, more about this later), i.e. ms = +1/2,

ms = −1/2 for spin 1/2, which can be written as |+〉, |−〉. Acting on these states, the x-direction

spin Sx has no eigenvalue at all (i.e. it’s much worse than being zero, it cannot be defined), because

|±〉 are not eigenstates of Sx. Let’s remind ourselves of this in a few different ways. To act with Sx
on e.g. |+〉, you can either rewrite the state, or the operator. In other words, you could a) rewrite

the eigenstates in an Sx basis, or b) rewrite Sx in the z basis. To do the latter, we could use either a

matrix representation of Sx, or writing it in terms of ket-bra pieces like |+〉〈−| (which is equivalent,

and can be written on a single line, but is kind of hard to read).



From eq. (3.2.1) we have

Sx =
h̄

2
(|+〉〈−|+ |−〉〈+|) =

h̄

2

(
0 1

1 0

)
(1)

in the z basis. (In the first equality you see the “hard to read” comment from earlier, or if you don’t

think it’s hard to read, congratulations!) So acting with this operator on spin up we have

Sx|+〉 =
h̄

2

(
0 1

1 0

)(
1

0

)
=
h̄

2

(
0

1

)
=
h̄

2
|−〉 (2)

For completeness let’s also do Sy:

Sy|+〉 =
ih̄

2

(
0 −1

1 0

)(
1

0

)
=
ih̄

2

(
0

1

)
=
ih̄

2
|−〉 (3)

Since both Sx and Sy flip the spin, the spins are not eigenstates of Sx and Sy so those operators

cannot be ascribed any eigenvalue at all in the z basis.

Now let us consider the complex linear combinations S± = Sx±iSy, from the previous calculations

we see that S±|+〉 = (h̄/2)(1± i2)|−〉, and similarly on the “spin down” state there’s an extra minus

sign in (3), leading to S±|−〉 = (h̄/2)(1∓ i2)|+〉, so S± act like

S+|+〉 = 0 and S−|+〉 = h̄|−〉 (4)

S−|−〉 = 0 and S+|−〉 = h̄|+〉 (5)

Let’s pause to interpret these equations. This goes back to the Schwinger oscillator model of angular

momentum (Ch. 3.9), where you think of S+ as “creating one unit of angular momentum”, like

the creation operator a† in the harmonic oscillator, and S− as “annihilating one unit of angular

momentum”. Applying this logic, since there is already a spin sitting in e.g. |+〉 state, annihilating

one unit of angular momentum by S− leads you to the spin down state, but trying to add another

one by S+ actually annihilates the state. (This last part is special to half-integer spin — in the

harmonic oscillator, you can just keep adding oscillators, but here there are only two possible states,

so it could either stay the same, go to the “other one” or disappear.) Turning this around, S+|+〉 = 0

was actually the key point (3.5.17) that led us to the result m = −j, . . . , j in the first place.

Finally we get to the square of the operator and we have, using Sx = (1/2)(S+ + S−),

S2
x|+〉 =

(
1

2
(S+ + S−)

)2

|+〉 =
1

4

(
S2
− + S+S− + S−S+ + S2

+

)
|+〉 (6)

=
1

4
S+S−|+〉 (7)

=
1

4
S+(h̄|−〉) =

h̄2

4
|+〉 (8)

where I used (4) to go from (6) to (7).



Quick exercise 1: Make sure you follow this step!

Or, we can use the matrix representation

Sx =
h̄

2

(
0 1

1 0

)
⇒ S2

x =
h̄2

4

(
1 0

0 1

)
(9)

to also see that S2
x|+〉 = h̄2

4 |+〉. So actually the z direction spins are eigenstates of S2
x and S2

y , which

is what lets us construct S2
x + S2

y = S2 − S2
z simultaneously. In fact we see that

S2|+〉 = (S2
x + S2

y + S2
z )|+〉 = 3 · h̄

2

4
|+〉 (10)

which is consistent with

S2|+〉 = s(s+ 1)h̄2|+〉 =
1

2

(
1

2
+ 1

)
h̄2|+〉 =

3h̄2

4
|+〉 . (11)

So we have seen that we can speak of lengths and z component consistently, but we need to avoid

talking of a z direction spin having a specific Sx eigenvalue.

To prevent any further confusion from this, let us also compute the Sx expectation value (as

opposed to eigenvalue) in for example the |+〉 state:

〈Sx〉+ = 〈+|Sx|+〉 = 〈+|1
2

(S+ + S−)|+〉 (12)

Quick exercise 2: finish this.

Also note the equation Sakurai (3.2.8):

〈Sx〉 → 〈Sx〉 cosφ− 〈Sy〉 sinφ (13)

under rotation around the z axis. If you were picturing the spin as a little vector pointing straight

up, you should have been confused about this, because it should not transform at all if we rotate it

around the axis it’s pointing along!

1.3 Adding spins

Generically Sakurai writes the angular momenta he’s adding as J = J1 + J2. The most prominent

special cases (though there are others) are

• J = L + S, where we’re specifying ` for a given state, it is is integer and s = 1/2 always. The

complication here is that there can be many states (for large `), so many CG coefficients, but

there is a nice semiclassical limit for L when ` is big: `(`+ 1) ≈ `2.

• S = S1 + S2 where s1 = 1/2 and s2 = 1/2. The simplicity of this special case is that in a

certain sense (see below) there are only two possible total states — spins opposite or not — but

the complication is that the semiclassical picture is completely untrustworthy in the details.



I will pick the second case S = S1 + S2 but what I’m saying here applies conceptually to the

addition of any two angular momenta.

First about labelling. The most obvious idea is to label states by spin up or spin down: |+ +〉,
| + −〉, | − +〉, | − −〉 (the m1,m2 representation, Sakurai eq. (3.8.13)). But we could also label

them by “in the same direction” or “in the opposite direction” (the s,ms representation, Sakurai eq.

(3.8.14)). What is most useful depends on the problem and in particular on rotational symmetry. If

there is an external magnetic field pointing up, it does matter if both spins are up or both are down

— the total energy will be lower if they are both along the field. If, on the other hand we specifically

focus on spin-spin coupling (as in the example of the hyperfine structure due to the proton and

electron spins), then we could at least temporarily ignore any external magnetic field, and in fact

we could use rotational symmetry to rotate “both up” to “both down” so those three s = 1 states

should be degenerate: hyperfine splitting only depends on “equal or opposite”.

Let’s say the spins are both up, i.e. the total state is | + +〉. There is a strong temptation to

draw a semiclassical picture of vector addition of two up spins like this:

S1

S2
? S1

S2
?

Friday, February 21, 14

We would then conclude (note the convention is that the total angular momentum has no subscript,

in other words Stot = S):

total length
?
= s1z + s2z =

h̄

2
+
h̄

2
= h̄ (Attempt 1, wrong) (14)

But we know this is wrong since the length of the “vector” S1 is

length of S1 = |S1| =
√

(S1)2 (15)

and the eigenvalue of S2
1 is always s1(s1 + 1)h̄2 = 1

2(1
2 + 1)h̄2 = 3

4 h̄
2. so the eigenvalue of |S1| is

√
3

2 h̄, not h̄
2 , i.e. the vector is not pointing purely in the z direction. The eigenvalue of |S1| is what

should properly be called the “length” of the semiclassical vector. (The quantum number s1 itself

is sometimes called the “length” in the sense that it is positive and related to the actual length

as
√
s1(s1 + 1)h̄, so s1 becomes indistinguishable from the length for large quantum number. The

problem with trying to interpret that terminology too literally is of course that here s1 = 1/2, which

is not exactly large.) So we know both lengths, could we just add them instead of the z components,

i.e. the same picture as before but now with the new lengths?

total length
?
=
√
s1(s1 + 1) h̄+

√
s2(s2 + 1) h̄ =

√
3

2
h̄+

√
3

2
h̄ =
√

3h̄ (Attempt 2, wrong) (16)

The earlier calculation underestimated the length by only considering the z component, and this

calculation overestimates it, by assuming that the full vectors are pointing in the same direction.

But at least we learned that the correct value should be somewhere in between h̄ and
√

3h̄.



So which direction are they pointing in? That’s this “cone” business. For S2 = S2
1 +S2

2 +2S1 ·S2,

in our hyperfine calculation we actually computed the dot product:

S1 · S2 =
1

2
(S2 − S2

1 − S2
2) =

{
1
4 (“parallel”)

−3
4 (“antiparallel”)

(17)

So the angle between them, if there is such a thing, is in any case neither zero nor ninety degrees,

but can only be arccos(1/4) or arccos(−3/4). Notice that this makes the notion of parallel and

antiparallel fuzzy as well, so Sakurai consistently avoids this by calling them singlet s = 0 and

triplet s = 1. To get the dot product above I used the actual calculation: the quantum numbers

add, s = s1 + s2 = 1/2 + 1/2 = 1, so we should have

total length =
√
s(s+ 1) h̄ =

√
1 · (1 + 1) h̄ =

√
2 h̄ (Correct) (18)

so the S2 eigenvalue we needed for hyperfine is 2h̄2, and the picture we are left with, which I’d still

put a question mark next to, is:

S1

S2
? S1

S2
?

Friday, February 21, 14



2 Spherical Harmonics and Wigner-Eckart

This tries to give alternative explanations of Sakurai Ch. 3.11, Tensor Operators, assuming that

you’ve at some point tried to read through it and got stuck (as everyone does). Now try to do

Problem 3.32 (Prob. 3.28 in 1st ed). Probably you won’t completely get it. Then read this. Then

go back and read Ch. 3.11.

In quantum-mechanical perturbation theory where the unperturbed problem has spherical sym-

metry (such as hydrogen-like atoms), it is useful to be able to think of the perturbation as a “spherical

tensor”, which is closely related to decomposing the perturbation in spherical harmonics. Doing this

decomposition helps us decide which integrals we need to calculate (out of a potentially large num-

ber, like 45 integrals for the linear Stark effect at level n = 3), and is closely related to using the

Wigner-Eckart theorem, as I’ll try to explain below.

2.1 General remarks on products of vectors

When we teach undergraduates how to multiply two vectors U and V in three dimensions, we say

there are two options: scalar product and cross product. But let’s try to just naively multiply the

components Ui and Vj together, for i, j = 1, 2, 3 we should get 3 × 3 = 9 components. The scalar

product is one number, the cross product is a vector so it contains three numbers, so there should

be 5 numbers left:

3× 3 = 1︸︷︷︸
U·V

+ 3︸︷︷︸
U×V

+5 (19)

We can think of the cross product U×V as an antisymmetric 3× 3 matrix in the following sense:

UiVj − VjVi =

 0 U1V2 − U2V1 U1V3 − U3V1

−(U1V2 − U2V1) 0 U2V3 − U3V2

−(U1V3 − U3V1) −(U2V3 − U3V2) 0

 (20)

So can express the general product UiVj as scalar product + cross product + other:

UiVj = c1(U ·V)δij + c2(UiVj − VjVi) + c3 · (whatever remains) (21)

The “whatever remains” is an object you’ve probably encountered, a traceless symmetric tensor. It

can be defined as literally whatever is left:

Sij =
UiVj + UjVi

2
− (U ·V)

3
δij (22)

meaning apart from the antisymmetric combination in the vector product, we can also make the

symmetric combination UiVj+UjVi, which gives the 3·2 = 6 independent components of a symmetric

matrix. And if you write out that matrix, its trace will be the scalar product (up to a factor) so we

have to subtract that out to avoid double counting. That leaves 6− 1 = 5 independent components

of the traceless symmetric matrix Sij .



So, Sij is another perfectly OK way to multiply together two vectors U and V, the only thing

that’s less familar about it than the scalar and cross products is that it’s not written purely in terms

of vector algebra. The good news is, there is no other way, we’ve exhausted the 9 numbers now.

2.2 Spherical tensor, definitions

I advocated using the commutator equation (3.11.25) as definition of spherical tensor, but concep-

tually (3.11.22b) can also be used as definition:

D(R)T (k)
q D†(R) =

k∑
q′=−k

D(k)
q′q (R)T

(k)
q′ (23)

So a spherical tensor of rank k is something that transforms under rotations like this. If it’s rank

0, there is only one term on the right, so it’s invariant. If the rank k = 1, then there are up to

three terms on the right, and we like to organize things not in terms of x, y, z but in terms of z,

x+ = x+ iy and x− = x− iy, so we label the three components of a rank 1 object as T
(1)
0 and T

(1)
±1 ,

as you see in the sum: for k = 1, the index q′ runs over −1, 0 and +1. This also means the Wigner

Dq′q matrix is 3× 3 so the whole thing is like rotation of a three-dimensional vector, and a generic

rotation will mix z, x+ and x− components.

Similarly, for a rank 2 spherical tensor you have 5 components: T
(2)
0 , T

(2)
±1 and T

(2)
±2 . These 5

components will mix under rotations, and the D(2)
q′q matrix is 5× 5 (this is probably not so familiar,

since Sakurai never computed it explicitly).

We start recognizing the 1, 3 and 5 objects from the previous section. A k = 0 spherical tensor

transforms as a scalar under rotations, a k = 1 spherical tensor transforms as a vector, and a k = 2

spherical tensor transforms as a traceless symmetric tensor.

2.3 Spherical tensors and spherical harmonics

We’re now going to practice Sakurai (3.11.15):

T (k)
q = Y m=q

`=k (V) (24)

If you stare for a while at this equation, you can’t say again that you have no idea what the magnetic

quantum number q or the rank k is. (You can say you don’t have a feeling for them, but not that

you have no idea.) But the equation (24) is just an example, not a definition: a completely general

spherical tensor could for example have a component that looks like (Ux+iUy)(Vx+iVy) (the q = +2

component of a spherical tensor of rank 2), which is not captured by equation (24), which only has

one vector V in it.

Exercise: For computing matrix elements in quantum-mechanical perturbation theory, it is

useful to be able to decompose for example a) x2 − y2, b) xy, c) x2 + y2 + z2 d) x2 as spherical



harmonics.

First we’re going to need a good table, so let’s use Wikipedia:

If you’re trying to make x2 from spherical harmonics, a common first reaction is to try to square

some ` = 1 spherical harmonic, (Y m
1 )2 for some m. However you’re not supposed to multiply any

basis functions together when doing a decomposition. Why? It seems we need to back down a little.

2.4 Understanding function decomposition

First two analogies that are useful to keep in mind. It’s useful to think about vectors in three-

dimensional space. A generic vector v can be expressed in x̂, ŷ and ẑ in the usual way:

v = vxx̂ + vyŷ + vzẑ (25)

We could call the components vx, vy, vz “expansion coefficients” since we’ve expanded the vector v

in this basis and vx, vy, vz are the coefficients. If you know the vector v either geometrically or in

some other coordinate system, and wanted to know the components in x̂, ŷ and ẑ, we can extract

the components by taking scalar products v · x̂ = vx and so on. Also note that if you tried to use

linearly dependent vectors as a basis, for example x̂, ŷ and 2x̂, you could obviously not expand a

generic vector (that may have a ẑ component) in this basis. But as long as you have 3 linearly

independent basis vectors, you’re fine. Also there is typically no sense to using a bilinear in the basis

vectors (like x̂× ŷ) as another basis vector, because it could itself be expanded in the basis vectors

(in fact x̂× ŷ = ẑ).



It’s also useful to think of Fourier decomposition of e.g. a one-dimensional sound wave,

f(x) =
∑
n

cne
inx . (26)

There are an infinite number of frequencies n one could in principle have in a given wave, so there

are an infinite number of Fourier coefficients cn that in principle need to be specified to specify

the function f(x). This is not so strange since we can imagine an infinite number of possible

periodic functions f(x), so we are trying to span a “space of functions”. Function spaces are infinite

dimensional, i.e. you need an infinite number of basis functions to expand a given function, as the

einx above for any n. There is now a “scalar (inner) product between functions”, defined for example

as an overlap integral, and for Fourier modes the orthonormal basis functions are basis waves:1∫
dx einxeimx = δmn (27)

This (plus some mathematical fine print) is enough to be able to expand any periodic function f(x)

in terms of the basis functions, since we can extract the coefficients by using the overlap integral of

f(x) and any basis wave, just like we did for vx = v · x̂. For a real sound wave, in practice we only

have some reasonably small number that are “excited” (have nonnegligible amplitude cn). They

could be hundreds, but that’s still “reasonably small” compared to an infinite number.

What does this have to do with spherical harmonics? They are a basis for scalar functions on

the sphere. They are both like basic vectors in 3 dimensions, because you can decompose a generic

function on the sphere in terms of them (and only in terms of them). Note in particular you would

not use the square of any of them when expanding in them. But they are also like a Fourier basis,

because there is an infinite number of them that you would in principle need for a generic function,

i.e. we are working with a function space, where the “scalar product between functions” is an integral.

2.5 Restricting to some reasonable number

Above I discussed the rank k of a spherical tensor, which is a generalization of `. The rank k is a

useful concept for restricting the number of basis spherical harmonics to a reasonable number. Now

x2 or xy are bilinear xi ·xj in the coordinates. The maximal rank for a bilinear is k = 2, so we won’t

have to consider any spherical harmonics with ` > 2. Note that in the example in the first section,

U and V were different, so there were 9 numbers. In the exercise examples above, U = V = x, so

there are 3! = 6 combinations. (In fact you can think of this as being the symmetric and scalar part

of a product, since the antisymmetric combination of two things that are the same just vanishes.)

These 6 combinations are

x2, y2, z2, xy, xz, yz (28)

1Note that you may be able to express einx in terms of ei(n−1)x using some (possibly nonlinear) trigonometric

identities, so the basis functions don’t need to be independent in the sense that there exists no functional relationship

between them, they only need to be orthonormal in the sense of this overlap integral.



Now, there is one special combination of bilinears. Although x, y and z depend on the angles θ

and φ, the combination x2 + y2 + z2 = r2 is constant in the angular directions, which means it’s

proportional to Y 0
0 , which is rank k = 0. So out of the 6 bilinears, only 6 − 1 = 5 of them are

actually rank 2. This means that any of the 6 combinations above can be expressed in terms of the

5 spherical harmonics Y m
2 plus possibly Y 0

0 .

2.6 Systematics

Once we have determined the 6 candidates, we can expand a specific example in them, e.g.

x2 = c0,0Y
0

0 + c2,0Y
0

2 + c2,1Y
1

2 + c2,−1Y
−1

2 + c2,2Y
2

2 + c2,−2Y
−2

2 (29)

so now instead of an a priori infinite number of expansion coefficients, we have used the “rank”

concept to restrict the calculation to only 6 coefficients. One could now explicitly compute the

scalar products by using the explicit forms of the Y m
` :∫

dΩ Y m∗
` x2 (30)

by plugging in x2 in terms of r, θ, φ for each of the 6 spherical harmonics. This would be analogous

to computing vx = v · x̂ for a three-dimensional vector. But a more efficient way is to use the

connection between the spherical harmonic viewed as a spherical tensor that can be expressed in the

coordinates themselves, as in the table.

2.7 Solution to Exercise: Decomposing into spherical harmonics

a) x2 − y2. Looking in the table we see Y ±1
2 don’t look promising because they have an xz. The

Y ±2
2 look better:

(x+ iy)2 + (x− iy)2 = x2 + 2ixy + (iy)2 + x2 − 2ixy + (iy)2 = 2(x2 − y2) (31)

so apparently we can expand

x2 − y2 =
1

2

(
(x+ iy)2 + (x− iy)2

)
(32)

=
1

2

(
4

√
2π

15

)(
Y 2

2 + Y −2
2

)
(33)

= 2

√
2π

15

(
Y 2

2 + Y −2
2

)
. (34)

This means in this example, 4 out of the 6 possible coefficients are zero.

b) Following the same pattern we can write the cross term xy as

2ixy = (x+ iy)2 − (x− iy)2 (35)



so this is the difference Y 2
2 − Y −2

2 , up to normalization.

c) This one is obviously just Y 0
0 .

d) This is a little trickier. We need to get asymmetry between x and y, and Y 0
2 won’t do that for

us, but the Y ±2
2 will. With this in mind, we can write an ansatz

c0x
2 = c1(x2 − y2) + c2(2z2 − x2 − y2) + c3(x2 + y2 + z2) (36)

and rearranging this, we see that

(c0 − c1 + c2 − c3)x2 + (c1 + c2 − c3)y2 + (−2c2 − c3)z2 = 0 (37)

which is a linear system for the coefficients, and we find

6x2 = 3(x2 − y2)− (2z2 − x2 − y2) + 2(x2 + y2 + z2) (38)

so

x2 =
1

6

(
3

1

k1
(Y 2

2 + Y −2
2 )− 1

k2
Y 0

2 + 2
1

k3
Y 0

0

)
(39)

I won’t work out the coefficients k1, k2, k3 but you can read them off from the table.

2.8 Matrix element with ground state

Let’s say we now wanted to compute the matrix elements of these bilinear operators like x2 − y2.

It’s particularly simple if one of the states of the matrix element, e.g. the ket, is the ground state:∫
dΩY m∗

` · T · Y 0
0 =

1√
4π

∫
dΩY m∗

`

∑
`′m′

c`′m′Y
m′
`′ =

1√
4π

∑
`′m′

c`′m′δ``′δmm′ =
1√
4π

∑
`m

c`m (40)

so if we have the expansion coefficients c`m from above, that’s all we need for the angular part of

the matrix element. (If it’s not zero, we’d still need to do the radial integral.)

2.9 General matrix element

The previous angular integral was for the special case that ground state was one of the states in the

matrix element (bra or ket, i.e. either row or column). If they are both general ` and m, we have to

think just a little more:∫
dΩY m∗

` · T · Y m′
`′ =

1√
4π

∫
dΩY m∗

`

(∑
`′′m′′

c`′′m′′Y
m′′
`′′

)
· Y m′

`′ (41)

where we can’t use orthogonality directly since we have three spherical harmonics. But now we can

expand either Y m
` or Y m′

`′ in an series using the expansion (3.8.72), to just get two so we can use the

orthogonality, which I do explicitly in an example below.



2.10 Seeing the pattern: matrix element with ground state

To take an example, the matrix element of x2 − y2 with the ground state works out to∫
dΩY m′

`′ · (x2 − y2) · Y 0
0 =

1√
4π

∫
dΩY m′

`′ · 2
√

2π

15

(
Y 2

2 + Y −2
2

)
=

√
2

15

(
δ`′,2δm′,2 + δ`′,2δm′,−2

)
so the bra (“after”) state should better have `′ = 2, m′ = ±2 for the matrix element to be nonzero.

On the other hand, x2 − y2 is a spherical tensor of rank 2 with magnetic quantum number q = ±2

(to be precise it’s the sum of those two componets, as we saw above), so the Wigner-Eckart (WE)

theorem says

〈n′, `′,m′|T (2)
±2 |n, `,m〉

WE
= 〈`, k;m, q|`, k; `′m′〉 · (n, ` stuff) (42)

= 〈`, 2;m,±2|`, 2; `′m′〉 · (n, ` stuff) (43)

Notice in the starting expression, the un-primes are all “before” (bra) and the primes are all “after”

(ket), but then when applying the theorem they get a little mixed. Now there are two rules one can

use for seeing when the CG coefficient on the right hand side is nonvanishing (this is discussed on

p.223 in Sakurai 2nd ed):

m′ = m+ q and |`− k| < `′ < `+ k (44)

These are easy to remember from semiclassical vector addition: the first one says that the z com-

ponents of two vectors add, and the second one says that the length of the sum of two vectors has

to be somewhere between the sum of the lengths (which occurs if the vectors are parallel) and the

difference of the lengths (if the vectors are antiparallel). In particular, for k = 2, q = ±2, the first

one gives m′ = m + q = m ± 2 and the second one gives |` − 2| ≤ `′ ≤ ` + 2. For ` = 0 the latter

says simply `′ = 2. For m = 0 the former gives m′ = ±2. We just get two possible CG coefficients

that don’t vanish:

〈0, 2; 0,±2|0, 2; 2,±2〉 (45)

According to the CG tables, if one of the first two j1, j2 is zero, the CG coefficient is a Kronecker

delta. So which ones are nonzero is consistent with the result above.

Notice the power of the WE theorem was to reduce the calculation to calculating a Clebsch-

Gordan (CG) coefficient. Also notice that the theorem itself does not actually tell you anything

about what vanishes, but the two CG rules (44) mentioned here are generally useful. Applying the

WE theorem and knowing something about CG coefficients together produces a “selection rule”, a

statement about which matrix elements can be nonvanishing.

What about normalization? Cleverly, Sakurai defined the spherical tensors T as including the

Y normalization. So the WE result is correct by definition, which means that to relate x2 − y2 and

T
(2)
±2 and use the WE theorem we need to compute the normalization separately. Since in this course

we mostly use the theorem to say when something vanishes, this is usually not a big loss.



2.11 Seeing the pattern: matrix element with general state

As mentioned above, Sakurai (3.8.72) says we can expand any two spherical harmonics in a linear

combination of single ones:

Y m1
`1

(θ, φ)Y m2
`2

(θ, φ) = (46)√
(2`1 + 1)(2`2 + 1)

4π

∑
`′

∑
m′

〈`1`2;m1m2|`1`2; `′m′〉〈`1`2; 0 0|`1`2; `′ 0〉
√

4π

2`′ + 1
Y m′
`′ (θ, φ) .

Let us consider this example, using the decomposition of xy from before:

〈` = 3,m = 2|xy |` = 1,m = 0〉 ∝
∫
dΩ Y 2∗

3 (Y 2
2 − Y −2

2 )Y 0
1 . (47)

How do we use the expansion above in this case? Again it boils down to the Clebsch-Gordan

coefficient rules in eq. (44). First note that for the upper index, e.g. Y +2
2 ·Y 0

1 requires m′ = 2+0 = 2.

Then for the lower index, |2− 1| ≤ `′ ≤ 2 + 1, which means `′ = 1, 2, 3. So for the two terms we each

have three possibilities:

Y 2
2 · Y 0

1 can be decomposed into Y 2
3 , Y

2
2 , Y

2
1 (48)

Y −2
2 · Y 0

1 can be decomposed into Y −2
3 , Y −2

2 , Y −2
1 (49)

But this will then be multiplied by Y 2∗
3 and integrated

∫
dΩ, which by the orthonormality condition

gives zero for everything that is not Y 2
3 , i.e. Y −2

3 , Y −2
2 , Y −2

1 , and Y 2
3 , Y

2
2 will all give zero. (Note the

orthonormality condition is with the complex conjugation). The only nonzero expansion coefficient is

that of Y 2
2 ·Y 0

1 into Y 2
3 . Which can be read off from a table of Y m

` , or computed from CG coefficients

as above. Explicitly, plugging in `1 = 2, `2 = 1, m1 = 2, m2 = 0, `′ = 3, m′ = 2 in (46) I find:√
(2 · 2 + 1)(2 · 1 + 1)

4π
〈2 1; 2 0|2 1; 3 2〉︸ ︷︷ ︸

1√
3

〈2 1; 0 0|2 1; 3 0〉︸ ︷︷ ︸
√

3√
5

√
4π

2 · 3 + 1
(50)

=

√
5
√

3

4π
· 1√

3
·
√

3√
5
·
√

4π

7
=

√
3

28π
(51)

where I used the CG table from Wikipedia:



so the claim is

Y 2
2 · Y 0

1 =

√
3

28π
Y 2

3 . (52)

Alternatively, from the table of spherical harmonics we find

Y 2
2 · Y 0

1 =
1

4

√
15

2π
e2iφ sin2 θ · 1

2

√
3

π
cos θ (53)

=

√
45

8 · 16π2
e2iφ sin2 θ cos θ (54)

and

Y 2
3 =

1

4

√
105

2π
e2iφ sin2 θ cos θ =

√
105

16 · 2π
e2iφ sin2 θ cos θ (55)

so indeed

Y 2
2 · Y 0

1

Y 2
3

=

√
45

8·16π2√
105

16·2π

=

√
3

28π
. (56)



Either way, I claim that the integral of the three spherical harmonics in our example gives∫
dΩ Y 2∗

3 (Y 2
2 − Y −2

2 )Y 0
1 =

√
3

28π
. (57)

Explicitly, what we have actually shown is that∫ 2π

0
dφ

∫ π

0
sin θ dθ 1

4

√
105
2π
e−2iφ sin2 θ cos θ · 1

4

√
15
2π

(
e2iφ sin2 θ − e−2iφ sin2 θ

)
· 1

2

√
3
π

cos θ =

√
3

28π
,

which can of course be easily checked with Mathematica or Maple. (As a footnote, one might then

wonder why we bother with this at all, if we now have software that can do it for us. I do think

excessive repetitive work of calculations by hand ceased to be useful in the last decade, maybe

the transition happened when I was in graduate school in the late 90s when we could not rely on

commercial software — Mathematica existed but there were webpages collecting mistakes it would

make with integrals from standard tables — but part of the craft of being a physicist is to be able to

compute things, and understanding the inner workings of some of the basics leads to generalization.

For example, the general representation theory of Lie algebras, as used in high-energy theory, is a

natural generalization of the above. So if all you ever did was plug into Mathematica, you would

have no concrete basis to build on for those more general things.)



3 Degenerate Perturbation Theory and Linear Algebra

This is an attempt to give a more elementary example of degenerate perturbation theory than

that given in Sakurai, the linear Stark effect. (To be more specific, it is actually essentially the same

as the linear Stark effect, but expressed in more elementary and generic terms.)

Consider this matrix

H0 =

(
E 0

0 E

)
(58)

The eigenvalue equation is ∣∣∣∣∣ E − λ 0

0 E − λ

∣∣∣∣∣ = 0 (59)

that is

(λ− E)2 = 0 ⇒ λ1,2 = E . (60)

We could have read this off right away, since a diagonal matrix has the eigenvalues on the diagonal.

This is not called a “degenerate matrix” if we want to be picky, that’s one with determinant zero,

but it has “degenerate eigenvalues”.

The eigenvectors H0v = λv are by definition:(
E 0

0 E

)(
v1

v2

)
= E

(
v1

v2

)
(61)

which is a linear system {
Ev1 = Ev1

Ev2 = Ev2
(62)

that is obviously solved by any v1 and v2. So we can pick two orthonormal basis vectors(
1

0

)
,

(
0

1

)
. (63)

Now perturb the original matrix by an off-diagonal matrix V :

H0 + V =

(
E 0

0 E

)
+

(
0 ε

ε 0

)
=

(
E ε

ε E

)
(64)

The eigenvalue equation for H0 + V is∣∣∣∣∣ E − λ ε

ε E − λ

∣∣∣∣∣ = 0 (65)



that is

(λ− E)2 = ε2 ⇒ λ1,2 = E ± ε (66)

So the eigenvalues are small changes of the original eigenvalues, as we would expect. The eigenvectors

are given by (
E ε

ε E

)(
ṽ1

ṽ2

)
= (E ± ε)

(
ṽ1

ṽ2

)
(67)

which is a linear system {
Eṽ1 + εṽ2 = (E ± ε)ṽ1

εṽ1 + Eṽ2 = (E ± ε)ṽ2
(68)

that is not solved by arbitrary ṽ1 and ṽ2. Dividing through by ṽ1 we have E + ε ṽ2ṽ1 = (E ± ε)

ε+ E ṽ2
ṽ1

= (E ± ε) ṽ2ṽ1
(69)

that are solved specifically by

ṽ2

ṽ1
= ±1 . (70)

So the two orthonormal basis vectors are

1√
2

(
1

1

)
,

1√
2

(
1

−1

)
. (71)

So compared to the original basis this is not a small change. Notice also that the new eigenvectors

don’t contain any ε, so this holds for any nonzero ε, no matter how small. Since they don’t contain ε

at all, they are zeroth order in the perturbation. When we set ε = 0 there is a discontinuous change

in the system, in that the eigenvectors become undetermined.

So could we not have started with these eigenvectors, if the original problem was undetermined?

Yes we could, but there would have been no way to find them without doing this analysis. Also,

the original eigenvectors might have some simple property that takes advantage of some feature of

the unperturbed system, like being parity eigenstates, that would not be guaranteed to be present

in the new eigenvectors.

In the linear Stark effect, the V above is the 2 × 2 matrix where the perturbation is actually

nonzero. The new zeroth order eigenvectors are called |±〉 in Sakurai, and they are not parity

eigenstates, but they are energy eigenstates of the perturbed system.

Exercise: redo the calculation for a H0 matrix with values E1, E2 on the diagonal, where

E1 6= E2. How is this nondegenerate case different from the above?



4 Scattering Basics

Again, please write down for yourself answers for these problems before you consult the solutions.

These should all be much easier than a typical Sakurai problem.

Classical particle scattering

1. Convince yourself by looking in fig. 11.3 that in some generality we can get dσ/dΩ from the more

intuitive concepts of impact parameter b and scattering angle θ:

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ (72)

Why is this not valid in full generality, i.e. what is the assumption built into equation (72)?

2. Equation (72) can be slightly confusing in that we view b (initial condition) as a function of θ

(final outcome) instead of θ as a function of b as we do in question 3 below. What is a sufficient

condition on the function θ(b) that ensures we’re free to work with b(θ) instead, i.e. that the function

has a unique inverse?

3. For a hard sphere, the relation between scattering angle θ (final outcome) and impact parameter

b (initial condition) in Griffiths eq. (11.2) is

θ =

{
2 arccos(b/R) b ≤ R
0 b > R

(73)

Derive this from elementary geometry (consult fig. 11.2).

4. Now plug in b(θ) in 1 above, to show that

dσ

dΩ
=
R2

4
. (74)

Since this hard-sphere scattering cross section is constant as a function of angle θ, it seems we are

getting particles scattered also straight in the forward direction θ = 0. But didn’t they all bounce

backwards off the “front” of the hard sphere?

Electromagnetic scattering

Now instead of a hard sphere we consider the repulsive Coulomb force, and for concreteness pick an

alpha particle coming in and a gold nucleus as the scattering center.

5. How is this “Rutherford problem” different from the Kepler problem?

6. Flick through the Wikipedia page Rutherford scattering, or read about it in your favorite

book. It writes a differential equation for the trajectory, and solves it to give a formula for the

deflection angle (that it calls Θ, I’ll keep calling it θ) as function of impact parameter b, analogous

to the θ(b) above:

θ = arctan bκ (75)



where κ = Z1Z2e
2/(4πε0mv

2
0b

2) where v0 is initial velocity. Try to give an interpretation of κ in

terms of energies.

7. The incoming alpha particle satisfies Newton’s second law F = ma = mẍ, a second order

differential equation. Doesn’t that mean that for each position, you would have an arbitrary velocity

to freely specify, i.e. through each point in space, there is infinite number of possible trajectories

passing through? If so, how can we restrict consideration to just hyperbola, parabola, ellipse orbits?

8. Convince yourself that σtot, the integral over dΩ of the Rutherford cross section

dσ

dΩ
∝ 1

sin4(θ/2)
(76)

is infinite. Is there any negative power of sin(θ/2) for which σtot would not have been infinite?

Discuss why σtot =∞ is not surprising, and worry about whether it is a problem.

9. The Rutherford cross section depends on the energy of the incoming particle as

dσ

dΩ
∝ 1

E2
. (77)

Formulate in words what this means, in terms of how “efficient” the scattering is for high or low

energy particles (try to think of a meaning of efficient in this context).

10. For initial velocity of 2 · 107 m and head-on collision, compute the point of closest approach

from energy conservation. Is this the radius of the nucleus? By the way, how would you take into

account nuclear recoil?

11. The previous problem should show that the scattering cross section in general characterizes

how much something interacts, not the physical size of the object causing the scattering (in this

sense the hard-sphere example is misleading in general). In particular it is the interaction between

the two objects, which may depend on properties of both objects. For example the size of the gold

nucleus bears no direct relation to the size of the “scattering region” which has to do with the

electromagnetic force, and is for example proportional to the number of positive electric charges,

both in the scattered particle and in the scattererer.

Relate these seemingly abstract statements to the fact that rear fog lights use red rather than

white light. To do so, consider the scattering of light off rain droplets in the fog. Does the size of

the droplet matter?



5 Bound state scattering (includes solution of Sakurai 6.10)

This is a somewhat more difficult problem than the ones in the homework, but towards the end

of your reviewing it would make sense to think about this.

One dimension

Let me first review the situation in one dimension. The transmission coefficient for a square

potential barrier is Sakurai (B.3.4)

T =
1

1 +
V 2
0

4E(V0−E) sinh2(2a
√

2m(V0 − E)/h̄2)
(78)

The delta potential barrier is the limit V0 →∞, a→ 0 of the square barrier, but the limit is taken

such that the product V0a = λ (the “area” of the square barrier) is kept fixed in the limit that the

barrier is taken to be very thin and very high. Then λ is the constant that ends up in front of the

δ function:

V = λδ(x) (79)

Note that a δ function barrier should not be thought of as an “infinite barrier” in the sense of an

infinite square well, as long as λ is finite, since the total energy associated with it is the integral over

V (r), which is finite. This can be somewhat surprising, since in classical mechanics nothing can get

through an infinitely high barrier even if it is arbitrarily thin (i.e. as long as you don’t break the

barrier). In quantum mechanics it’s not so much the height that is important as the total energy

associated with the barrier.

Either taking a limit of the above expression, or computing it directly, the transmission coefficient

for this delta function barrier is

T =
1

1 + mλ2

h̄2E

. (80)

Three dimensions

Let me consider Sakurai problem 6.10, scattering off of a repulsive spherical delta-function shell:

V (r) =
γh̄2

2m
δ(r −R) (81)

with γ > 0. First, recall from above that a δ function should not be thought of as an infinite barrier

as long as γ is finite, since the total energy associated with it is the integral over V (r), which is

finite. One might think that a positive (repulsive) potential could not trap particles, but if they

make it inside, the shell could then repel them from leaving. (This is sometimes used as a “Fermi

prepotential” in neutron-nucleus scattering.) The total wavefunction is

ψ(+)(x) =
1

(2π)3/2

∑
i`(2`+ 1)A`(r)P`(cos θ) (82)



where we write A`(r) = u(r)/r and u satisfies a one-dimensional-looking radial Schrödinger equation

u′′` +

(
k2 − 2mV (r)

h̄2 − `(`+ 1)

r2

)
u`(r) = 0 (83)

Consider ` = 0

u′′`=0 + (k2 − γδ(r −R))u`=0(r) = 0 (84)

This is solved by integrating
∫ ε
−ε dr and taking ε→ 0, which gives zero for the smooth contribution

from k2u(r), leaving us with a jump in the derivative as a matching condition:

u′|outside − u′|inside = γu (85)

Inside (r < R) we have u0(r) = A sin kr and outside r > R we have u0(r) = B sin(kr + δ0), with

some phase shift δ0 that is to be determined. Matching u at r = R:

B sin(kR+ δ0) = A sin kR (86)

Matching u′ at r = R with the discontinuity from eq. (85):

Bk cos(kR+ δ0)−Ak cos kR = γA sin kR (87)

If we divide this equation by the previous one (which means forming the logarithmic derivative u′/u)

we get an equation that’s free of the normalization constants A and B:

k cot(kR+ δ0)− k cot kR = γ . (88)

or

cot(kR+ δ0) = cot kR+
γ

k
. (89)

This determines δ0. Before solving for it exactly, note that for γ →∞ we have a simple approximate

solution: cot(kR+ δ0)→∞, which just means sin(kR+ δ0)→ 0, so kR+ δ0 ≈ 0, or

δ0 ≈ −kR for γ →∞ (90)

like for the hard sphere. Plotting the cross section σ = 4π sin2 δ0/k
2 in this limit we have a (sinx/x)2

function.

Quick exercise 1: Argue physically why the delta shell phase shift (and therefore cross section)

should reduce to the hard sphere in this limit.

There are many ways to solve for δ0, the most simple-minded is to solve for cot δ0 by using the

addition formula for cot(x+ y), which reads

cot(kR+ δ0) =
cot(kR) cot(δ0)− 1

cot(kR) + cot(δ0)
(91)



leading to

cot kR cot δ0 − 1 = (cot kR+ cot δ0)(cot kR+
γ

k
) (92)

= cot2 kR+
γ

k
cot kR+ cot δ0 cot kR+

γ

k
cot δ0 (93)

so collecting terms we have

cot δ0 = −k
γ

(
1 + cot2 kR+

γ

k
cot kR

)
(94)

= − k

γ sin2 kR
− cot kR (95)

using 1 + cot2 x = 1/ sin2 x. Plotting the cross section σ = 4π|f |2 = 4π/(k2(1 + cot δ2
0)) (which is

also equal to 4π sin2 δ0/k
2), we have

We suspect that the spikes are caused by resonances. The resonance condition cot δ0 ≈ 0 occurs

at k values k = kr for which

kr

γ sin2 krR
≈ − cot krR (96)

which using sin 2x = 2 sinx cosx is

sin 2krR ≈ −
2kr
γ

(97)

so krR ≈ nπ − kr
γ (we will see below why (n + 1/2)π is excluded) or kr(R + 1

γ ) = nπ, or for the

square

k2
r =

(nπ)2

(R+ 1
γ )2
≈ (nπ)2

R2

(
1− 2

Rγ

)
(98)



and the energy of bound states are Er = h̄2k2r
2m as usual. Comparing to the bound state for infinite

spherical well, E = h̄2k2/(2m) = h̄2n2π2/(2mR2), we have

Er =

(
1− 2

Rγ

)
Eb (99)

so there is an n-independent overall factor. We see that for γ →∞, the energies Er → Eb.

Recall the formula for the width

Γ = −2

(
d(cot δ0)

dE

∣∣∣∣
E=Er

)−1

(100)

For this to make sense we see that d(cot δ0)
dE < 0. This is explained in the “Editor’s note” as “no

unphysical advance”, and this prohibits (n+ 1/2)π above. So

1

Γ
= −1

2

dk

dE
· d
dk

(
− k

γ sin2 kR
− cot kR

)
at k = kr (101)

=
1

2 · 2h̄2k/(2m)
·
(

1

γ sin2 kR
− 2kR cos kR

γ sin3 kR
− 1

sin2 kR

)
at k = kr (102)

=
m

2h̄2kr
· 1

sin2 kR

(
1

γ
− 2kR cot kR+ 1

)
at k = kr (103)

=
m

2h̄2kr
· 1

sin2 krR

(
1

γ
− 2krR(− kr

γ sin2 krR
) + 1

)
(104)

=
m

2h̄2(nπ/R)
· 1

(nπ/(γR))2
=

mR3γ2

2h̄2(nπ)3
(105)

using the resonance condition and sin2(krR) ≈ (nπ/(γR))2. We see that the widths Γ → 0 as

γ →∞, the resonances become very narrow.



A Scattering in one dimension: Maple worksheet

This Maple worksheet (which I can give you if you are interested) discusses a few elementary

aspects of scattering and transmission in one dimensions that are not immediately evident when

staring at expressions.



(2)(2)

(4)(4)

(3)(3)

(1)(1)

Elementary quantum scattering
Barrier transmission
restart

T :=
1

1C
V02 sinh k1a 2

4 E V0KE

T :=
1

1C
1
4

 
V02 sinh k1a 2

E V0KE

k1a := c 1Ka

k1a := c 1Ka

where E/V0 = alpha, and c = sqrt(2m V0) a /hbar, which is set to 7 in the Wikipedia plot.

cabs :=
2 m V0  a
hbar

cabs :=
2  m V0  a
hbar

Tsimp := simplify subs E = V0 a, T , size

Tsimp := K
4 a K1Ca

4 aK 4 a
2
C sinh c 1Ka

2

plot subs c = 7, Tsimp , a = 0 ..3, thickness = 3



a
0 1 2 3

0

0.2

0.4

0.6

0.8

1

Same as on Wikipedia.
Barrier becomes transparent at some special points (the energies of the infinite square well)
If we focus on E ! V0, we have
plot subs c = 7, Tsimp , a = 0 ..1, thickness = 2



(7)(7)

(6)(6)

(5)(5)

a
0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Well transmission
restart

T :=
1

1C
V02 sin k1a 2

4 E EKV0

T :=
1

1C
1
4

 
V02 sin k1a 2

E EKV0

Switch k_1 by hand:

k1a := c aK 1

k1a := c aK 1

Tsimp := simplify subs E = V0 a, T , size

Tsimp :=
4 a aK 1

4 a
2
K 4 aC sin c aK 1

2



plot subs c = 7, Tsimp , a = 0 ..3, thickness = 2
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Now we focus on E>V0 but |E|<V0, so we get the same looking curve. 
plot subs c = 7, Tsimp , a = 0 ..1, thickness = 2
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delta function limit
V0 -> oo, a -> 0 while V0 a = constant.
This means c is small but not negligible
plot seq Tsimp, c = 0.06, 0.4 , a = 0 ..1, thickness = 2
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The d function potential gives

Tdelta :=
1

1C
m l

2

2 hbar2 E

Tdelta :=
1

1C
1
2

 
m l

2

hbar2 E

series Tdelta, l, 5

1K
1
2

 
m

hbar2 E
 l

2
C

1
4

 
m2

hbar4 E2  l
4
CO l

6

If we want to compare:
series T, c, 3

1K
1
4

 
V02 aK 1
E EKV0

 c2 CO c4

quad_term := coeff series T, c, 3 , c, 2  c2
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(11)(11)quad_term := K
1
4

 
V02 aK 1  c2

E EKV0

If we set V0 a = l, we get agreement

simplify subs c = cabs, a =
E
V0

, V0 =
l
a

, quad_term

K
1
4

 
cabs2 l
a E

What about the quartic term?
quar_term := coeff series T, c, 5 , c, 4  c4

quar_term :=
1

12
 
V02 aK 1

2

E EKV0
C

1
16

 
V04 aK 1

2

E2 EKV0 2  c4

We get agreement from the leading term, this is an expansion for small a, so E*a is negligible

expand simplify subs c = cabs, a =
E
V0

, V0 =
l
a

, quar_term

1
12

 cabs4 K
1
12

 
cabs4 l
a E

C
1

16
 
cabs4 l

2

a2 E2



B Two-state time evolution: Maple worksheet

It is easy to sketch two-state time evolution near resonance, but this also includes away from

resonance.



> > 

> > 
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> > 
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> > 

Time evolution of twoK state system
This is a Maple worksheet that just plots the Rabi expression we discussed
in class (and that you derive in Problem 5.30). 
restart

This is the Rabi formula for the probability |c_2(t)|̂ 2:

c2sq :=
g

2
 sin W t

2

hbar2 W
2 :

where

W :=
g
hbar

2

C
wKw21

2

4

1
2

:

If we measure frequences in SI units, omega is a big number which can be inconvenient for numerical 
analysis. We could use adapted units where e.g. omega is measured in units of 1/hbar, but as we will see, 
the huge numbers we get are not too huge, so let's just use SI. 
Let's say gamma is an electron volt, and omega is an electronvolt/hbar. 
This is not particularly realistic in any actual system, but I'm just trying to give an illustration.
with ScientificConstants : hbar := evalf Constant hbar

hbar := 1.054571596 10-34

vals := g = 1.6 10-19, w21 =
1.6 10-19

hbar
vals := g = 1.600000000 10-19, w21 = 1.517203769 1015

For comparison, the ammonia maser is 24 GHz:
2.4 1010$2 evalf p

1.507964474 1011

So the above omega21 is 10 000 times bigger than the 24 GHz of the ammonia maser.
Anyway. First let's plot is as a function of time at resonance:
c2sq_val := simplify evalf subs w = w21, vals, c2sq :
plot c2sq_val, 1K c2sq_val , t = 0 ..5. 10K15, legend = "|c2|̂ 2", "|c1|̂ 2" , thickness = 2
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And off resonance:
c2sq_val := simplify evalf subs w = 5$ w21, vals, c2sq :
plot c2sq_val, 1K c2sq_val , t = 0 ..5. 10K15, legend = "|c2|̂ 2", "|c1|̂ 2" , thickness = 2
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The period is:

t1abs :=
p

2 W
:

t1 := subs vals, t1abs :
evalf subs w = w21, vals, t1

1.035323243 10-15

Then let's plot |c_2(t)|̂ 2 as a function of omega at time t1
c2sq_val_o := simplify evalf subs t = t1, vals, c2sq , sin

c2sq_val_o :=
2.301907276 1030

2.301907276 1030 C 0.2500000000 wK 1.517203769 1015 2

plot c2sq_val_o, 1K c2sq_val_o , w =K2. 1016 ..2. 1016, legend = "|c2|̂ 2", "|c1|̂ 2" , thickness
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c2sq_val_o := simplify evalf subs t = 2 t1, vals, c2sq , sin :
There is a danger of underflow here, since sin(pi)=0,but the plot is good enough:
plot c2sq_val_o, 1K c2sq_val_o , w =K2. 1016 ..2. 1016, legend = "|c2|̂ 2", "|c1|̂ 2" , thickness

= 2
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This just says that at t = 2 t1, c2 is always equal to 0. 
What about in `between?
c2sq_val_o := simplify evalf subs t = 1.5 t1, vals, c2sq , sin :
plot c2sq_val_o, 1K c2sq_val_o , w =K2. 1016 ..2. 1016, legend = "|c2|̂ 2", "|c1|̂ 2" , thickness

= 2
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Now do the 3d plot as a function of both time and frequency:
c2sq_val_both := simplify evalf subs vals, c2sq :
plot3d c2sq_val_both, t = 0 ..9. 10-15, w =K1. 1016 ..1. 1016, numpoints = 2002, axes = boxed,

style = surface, orientation = 120, 45, 0



> > 

We see that a given slice at different times can produce quite different plots.



C “Zero-energy” scattering: Maple worksheet

Some of the arguments and plots in the zero energy scattering section seem somewhat mysterious

but it is actually quite simple, which this worksheet tries to illustrate. I use a smooth (not just

piecewise constant) potential, which turns out to be somewhat important.
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Very low energy ("zero-energy") s-wave scattering
restart
with plots : with plottools :

Consider the radial Schrödinger equation with angular momentum = 0 (s-wave).
If the original radial wavefunction is A(r), write u(r) = r A(r) as usual for a spherical wave.
I absorb constants into redefinitions of E and V. 

SE :=
d2

dr2  u r C EKV  u r :

Here's a simple model for a smooth (as opposed to step function) repulsive potential, with R ~ 1. 
Vrep := K0.25 tanh 3 r K p K 1 :
plot Vrep, r = 0 ..6, view = 0 ..5, K3 ..1 , thickness = 2
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The wavefunction for this repulsive potential (finite smooth barrier) is
V := Vrep :
sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric :
display plot 1.3 r K 0.20 , r = K0.1 ..2, color = blue, linestyle = dash , point 0.2, 0 , symbol

= solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..2, thickness = 2
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where we read off the scattering length a from the intercept (marked with a black dot). 
Note that the linear function is not a particularly good approximation to the inside (R<1) solution, we are 
just extending
it to there to estimate the scattering length a, following the discussion in Sakurai. 
Now we move on to an attractive potential, still R ~ 1. We consider three potentials of of increasing depth,
V1, V2 and V3:

V1 := 0.25 tanh 3 r K p K 1 : V2 := 0.9 tanh 3 r K p K 1 :
V3 := 1.2 tanh 3 r K p K 1 :
plot V1, V2, V3 , r = 0 ..6, view = 0 ..5, K3 ..1 , thickness = 2
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For the most shallow well we have:
V := V1

V := 0.25 tanh 3 r K p K 0.25

sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric :
display plot 0.65 r C 0.6 , r = K1 ..5, color = blue, linestyle = dash , point K0.6, 0 , symbol

= solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..5, thickness = 2
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The precise value of the slope of the blue line will depend on how far out you go, and (as I check below)
at some point the linear approximation outside will start to break down,  so we already see this can only 
make
sense for a "truncated" domain. 
Now increase the well depth:

V := V2 :
sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric :
display plot 0.1 r C 7.2 , r = K8 ..8, color = blue, linestyle = dash , point K7.2, 0 , symbol

= solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..5, thickness = 2 , view = K8 ..5, 0
..1.5
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We see one of the key points, that a moves out to the left and can be much bigger in absolute value than 
R. 
At some point a "crosses from negative to positive infinity", i.e. goes over to large values on the positive 
x-axis, 
i.e. the blue dashed line "flips over" through horizontal, as we see in the deepest of our three wells:

V := V3 :
sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric : plotkeep d plot

K0.1 r K 8.2 , r = K8 ..8, color = blue, linestyle = dash , point 8.2, 0 , symbol
= solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..12, thickness = 2 , view = K8
..12, K1 ..1.5 :

display plotkeep
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When we match inside/outside at R ~ 1, for the interior solution we would try to use a sine function
as approximation, but because the potential is smooth, we expect it to be a bad approximation
right around R = 1:
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(2)(2)
matchingsine d sin 0.95 r ; 

matchingsine := sin 0.95 r

display plot matchingsine, r = 0 ..2, color = black , odeplot sol, r, u r , 0 ..2, thickness = 2
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This leads us into a discussion of the outside solution
. Sakurai is saying is that there is a "bound state wavefunction"

exp(-kappa r) that is valid outside R and for negative E.
The confusing point is that E is positive, so what does this mean? But small positive E is "close to being 
negative",
in the sense that for small k^2, sine and constant and exponential
are all close to each other in some limited region in r.
If you accept this, we know the exponent kappa in the 
bound state exponential from Sakurai's discussion, it's approximately kappa = 1/a  (for R << a):

k :=
1

8.2
k := 0.1219512195

The normalization is not given by that discussion, we have to fix it ourselves:

boundstate := 0.8 eKk r

boundstate := 0.8 eK0.1219512195 r
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This gets it right outside :
display plot boundstate, r = 0 ..2, color = black , odeplot sol, r, u r , 0 ..2, thickness = 2
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We can think of this as "loosely bound" since kappa (corresponding to the bound state energy) is fairly 
small. 
Of course, all this is based on cutting everything off at some point and effectively matching to E=0, since 
otherwise the
linear approximation outside always fails at some large radius :

display plot K0.1 r K 8.2 , r = K8 ..8, color = blue, linestyle = dash , point 8.2, 0 , symbol
= solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..40, thickness = 2 , view = K8
..40, K2 ..1.5
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This exhibits the original idea of approximating the outside
wavefunction as a constant: it is actually a sine function, so if constant is a decent approximation
over some range, then so is exponentially decaying (until it crosses zero, that is).

Finally, let us make the potential steeper, more like the step function of the
piecewise constant well:

V4 d 1.2  tanh 12 r K 4 p K 1 :
plot V3, V4 , r = 0 ..6, view = 0 ..5, K3 ..1 , thickness = 2
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V d V4 :
sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric :
display plotkeep, plot K0.1 r K 8.2 , r = K8 ..8, color = blue, linestyle = dash , point 8.2, 0 ,

symbol = solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..12, thickness = 2, color
= green , view = K8 ..12,K1 ..1.5



> > 

(5)(5)

> > 

> > 

(2)(2)

r
K5 0 5 10

K1

K0.5

0.5

1

1.5

As expected, there is no qualitative change. But if V(r) is truly a step function, though, something 
changes:

V5 d piecewise r ! 1,K2.4 ;

V5 :=
K2.4 r ! 1

0 otherwise

plot V3, V4, V5 , r = 0 ..6, view = 0 ..5, K3 ..1 , thickness = 2, color = red, green, blue
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V d V5 :
sol := dsolve subs E = 0.01, SE , u 0 = 0, D u 0 = 1 , u r , numeric :
display plotkeep, plot K0.1 r K 8.2 , r = K8 ..8, color = blue, linestyle = dash , point 8.2, 0 ,

symbol = solidcircle, symbolsize = 15 , odeplot sol, r, u r , 0 ..12, thickness = 2, color
= blue , view = K8 ..12,K1 ..1.5
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Now there cannot be smooth matching to something that slopes down, in the "outside linear" 
approximation:
Indeed at best it can bend down to hit the x-axis, as it's starting to do here, but then it is not approximately
linear. 
So in a sense, this whole discussion rests upon the potential not really being a step function. 


