
The Renormalization Group
Marcus Berg, March 6, 2017

1 Basic history: particle physics and condensed matter physics

The Wikipedia page on the renormalization group goes back to Pythagoras, and there was certainly
some early related work by particle physicists on renormalization in the 1950s. But the key steps to
the modern renormalization group are: Kadanoff in 1966 [3], Callan and Symanzik in 1970 [4, 5], and
then in 1971 Kenneth Wilson1 began a synthesis of the earlier work. Wilson made the renormalization
group into a more universal program that led to his 1974 solution of a ten-year old problem in cond-
mat (condensed-matter, what used to be called “solid state physics”), called the “Kondo problem”,
as he summarizes in his Nobel lecture [6].2 Wilson wrote a beautiful popular-science article about
the renormalization group in [8]. Of course nowadays there is a one-minute YouTube video about it
[9], where I got this picture:

So, first condensed matter physics for orientation. In the free book Gould & Tobochnik [1], there
is first a discussion of the simple process of percolation, then (in Ch. 9.5) the renormalization group
for the 1D Ising Model of interacting magnetic spins in a one-dimensional chain. In my statistical
mechanics notes I discuss the precursor of this, the mean field theory approximation, where the
magnetic effect of all other spins on a single spin is collected into a modification of the background
magnetic field. In Problem 9.25, Gould & Tobochnik discuss the Kosterlitz-Thouless phase transition
(Nobel prize 2016). Although they don’t discuss it there, Kosterlitz applied renormalization group
method to their transition in 1974 [2], which was part of their cond-mat Nobel prize.

2 Renormalization group in quantum field theory

2.1 Summary

One way to state Wilson’s insight is that amplitudes are not organized by graphs, but by scale. This is
the front page of Peskin & Schroeder. It basically means that the coupling constant g counts the num-
ber of loops, but the energy scaleQ (which can be thought of as being set by experiment3) affects how

1Usually his first name is emphasized the first time you bring him up, since there are several other Wilsons in physics.
2“The result was a recursion formula in the form of a nonlinear integral transformation on a function of one variable, which I was

able to solve by iterating the transformation on a computer.” I find it pretty amazing that any single researcher did anything
on a computer in 1970. Paul Ginsparg in his reminisces about creating the arXiv [7] writes “My thesis advisor Ken Wilson
repeatedly promoted to us the need for massive parallel processing”. So in an admittedly far-fetched sense, the arXiv is a
spin-off of the renormalization group,

3Why is it called Q and not for example E? This is because I have the proton collider at CERN in mind, where Q is
the scale of momentum transfer between quarks and gluons in the colliding protons, which is not automatically set by the
energy of the injected protons. The actual momentum transfer can only be determined with hindsight, when experimenters
have picked out the “interesting” proton-proton collisions. But given this hindsight, Q can indirectly be thought of as the
energy scale of the experiment.
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many loops you should keep for given accuracy. A practical discussion of this for experimentalists is
given by the Particle Data Group — more about this below.

2.2 Discussion

A simple important point that in my experience is sometimes not stated clearly is that if we could
compute something exactly, we could worry less about “given accuracy” in the little summary above.
Let me try to explain this.

There are lots of explicit equations about all these things in the textbooks. But it’s easy to get lost
in the details. So here’s a simplistic attempt to illustrate the point. The difference between the exact
and truncated cross sections as functions of coupling g and energy Q can be illustrated as4

σexact(g,Q) = |︸ ︷︷ ︸
perturbative

| |︸ ︷︷ ︸
nonperturbative

(2.1)

σtrunc(g,Q/M) = | |M−−−︸ ︷︷ ︸
perturbative

|− − −|︸ ︷︷ ︸
nonperturbative

(2.2)

First, I have emphasized that in addition to an all-loop-order perturbative result (sometimes itself
incorrectly called “exact”), there can be an additional piece that is nonanalytic in g, like e−1/g, which
is nonperturbative5. The exact result σexact does not necessarily depend on the arbitrary renormal-
ization scale M and can be matched to experiment. In condensed matter physics this is conceivable
to do directly.

In particle physics, roughly speaking the only models where σexact is known are the ones that
are not realistic enough to match to experiment, e.g. in low dimension (e.g. Gross-Neveu model),
or with strong symmetry assumptions (like maximally supersymmetric Yang-Mills theory, where
partial results are known). By contrast, a realistic theory is QCD (quantum chromodynamics), the
theory of the strong nuclear interaction. A typical strong-interaction QCD cross section measured at
the LHC at CERN is σ for ZZ production, which is 7 pb (picobarn, see my particle physics notes).

To compute such cross sections from theoretical considerations, we consider σtrunc at some order
in perturbation theory, and let us also ignore nonperturbative effects. The symbolM in σtrunc above is
meant to represent that we truncate at a given loop level L (where the perturbative contribution is of
order gL) and introduce a scale M at which we define the cross section σ. Typically a loop correction
is g log(Q/M), and at some experimentally accessible scale Q = M we have log(Q/M) = log 1 = 0, so
in practice the tree-level value (i.e. for g → 0) is the one that it matched to experiment at that energy
scale.

The first time one hears about the arbitrary introduction of the unphysical reference scale M ,
many students find it almost unbearable. (I know I did.) It is related to another even more unbearable
fact, that finite parts of amplitudes depend on an arbitrary choice of what to cancel along with any
possible infinities (“renormalization scheme”).6 As you might guess from the way I stated this, the

4This can be confusing as the textbooks often give a (useful) dimensional analysis argument that dimensionless observ-
ables cannot depend on the energy Q by itself but can only depend on the combination Q/M , where M is an unphysical
reference scale that is inserted by hand. This useful argument has several caveats: at high energy there might be a new
physical fundamental energy scale (in string theory, the string scaleMs, but it could equally well be the GUT scaleMGUT or
the Planck scaleMP , or just the scale of heavy quarksMQ). Or, the observable of interest may simply not be dimensionless:
σ has dimension of area so the naive dependence is as Q−2 without the unphysical M .

5Assuming something about the value of the coupling , it is easy to make a naive estimate that nonperturbative effects
e−1/g ∼ gL for some number of loops L, e.g. for g ∼ 0.1 they become comparable to perturbative contributions at L ∼ 5
loops. Examples of nonperturbative contributions in quantum field theory include instantons and renormalons. The latter
are potentially more harmful (technically, they obstruct Borel resummability of the pertubation series), but may be avoided
under some circumstances. Both are well described in Weinberg’s book.

6In fact the arbitrariness is even worse than I gave the impression of above: loop corrections to amplitudes can vary in
sign, so the cross section could either shrink or grow when we compute more loop corrections. It’s OK to ignore this issue
for now and imagine that perturbation theory converges nicely, and we accumulate positive corrections to ultimately reach
some nice finite “end” value for σ like 7 pb. To be honest, this is not the case in any really physical example, but the issue
of infinities is logically distinct from conceptual understanding of the renormalization group, see below.
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two issues in a certain sense “cancel” each other. In fact this is how Peskin & Schroeder leads into the
discussion of the renormalization group (around eq. (11.80)), but I find that explanation somewhat
confusing.

I included some comments about QCD vs. experiments above to help make this more concrete: in
particle physics there is an enormous amount of data that is more or less understood, and the relevant
Nobel Prizes have been awarded to theorists like Gross et al (2004) for theoretical calculations that
are in fact matched to experiments, like the strong coupling gs, or the combination αs = g2s/(4π).
This is relatively concisely summarized in the Review of Particle Physics by the Particle Data Group
(pdg.lbl.gov), where all key results in particle physics are available online7. Their review of QCD [10]
does not attempt to teach QCD, but discusses the scheme dependence of higher-order terms in the
strong coupling αs for practically-minded experimentalists. Let me come back to this below after I
introduce the basic equation they solve.

2.3 The renormalization group equation

We will use the version of the renormalization group equation called the Callan-Symanzik equation:
(
M

∂

∂M
+ β(g)

∂

∂g
+ nγ

)
G(n)(x1, x2, . . . , xn; g,M) = 0 . (2.3)

that tells us how an n-point correlation function G(n)(x1, x2, . . . , xn; g,M) depends on renormaliza-
tion reference scaleM . The functions β and γ can be calculated in perturbation theory and are specific
to each theory.

Essentially, the equation instructs us that the object of interest does not depend on g and M in-
dependently, but that a change in one of them can be compensated by a change in the other, so that
we are effectively following a curve in the (g,M) plane instead of exploring the entire plane. But
really, why is it better to use this equation than to do the naive thing: compute at fixed g and fixed
loop order L, and vary the energy of the experiment Q as you wish? The answer is the Peskin &
Schroeder cover: only increase accuracy (loop order) when we need it, and then use information
about lower loop orders as boundary condition of this differential equation to infer something about
some dominant feature (usually leading logarithms) of the next loop order. The result for αs(Q) is Pe-
skin & Schroeder Ch. 17.6 (there are more recent plots from the PDG, but I find this one the clearest):

An analogy I personally like is “adaptive mesh refinement” in computing, that you have already
used every time you solved an ODE numerically in Maple or Mathematica: where a function changes
quickly in some region, the algorithm adds more mesh points in that region only, i.e. increases com-
putational effort. Changing quickly means having structure on relatively short distance, which cor-
responds to high frequency f by Fourier transform, or high energy by E = hf . So if you want to
probe high energy, only increase effort (compute to higher loop order) for those observables that
are sensitive to an increase in energy (“logarithms become large”). This clever strategy is called the
“renormalization group improvement” of perturbative quantum field theory. An explicit example is
in Weinberg Vol.2, section 18.8.

7I casually note the fact that I’m credited in the Review of Particle Physics as a “consultant” [11] for the Particle Data
Group (PDG) up until 2001. Ask me why!
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3 Decoupling

In fact due to the above issues of truncation, despite the nice plot it is fair to say that the strong cou-
pling constant αs in experiments is itself not an “observable” in any real sense. Related to this is that
the beta function β(g) itself is in general not physical, and may in fact even change discontinuously
as we cross an energy threshold. (That is why I insisted on σ above: cross sections are observable8.)
As Pich [14] argues, this can be thought of as being due to the standard practice of computing β
in the technically convenient but somewhat unphysical scheme of dimensional regularization with
minimal subtraction, or “MS”. In a “more physical” scheme like one that Pich introduces, the QED
beta function for mass m looks like (Pich defines β = β1 · α/π, so that 3β1/(2Q

2
f ) = 1 in the massless

theory with Qf fermions): Effective Field Theory 23
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Fig. 6. Mass–dependence of β1 in the µ–scheme.

Thus, at energies much smaller than mf the fermion decouples [27].

In the MS scheme, the β function is independent of the mass. Therefore,
the fermion generates the same contribution, β1 = 2Q2

f/3, to the running of
the QED coupling at all energy scales: a heavy fermion does not decouple
as it should. Moreover, the renormalized self-energy,

ΠR(q2/µ2) = −Q2
f

α

3π
6

∫ 1

0

dxx(1− x) log

[
m2

f − q2x(1− x)

µ2

]
, (3.28)

grows as log (m2
f/µ2). For µ ≪ mf the logarithm becomes large and per-

turbation theory breaks down.
The mass–independent subtraction gives rise to an unphysical behaviour

when q2, µ2 ≪ m2
f . The MS coupling runs incorrectly at low energies,

because one is using a wrong β function which includes contributions from
very high scales. The large logarithm in ΠR(q2/µ2) is compensating the
wrong running, in such a way that the low–energy (E ≪ mf ) physical
amplitudes are not affected by the heavy–fermion contributions.

Decoupling of heavy particles is not manifest in mass–independent sub-
traction schemes. This is an important drawback for schemes such as MS
or MS. However, they are much easier to use than the mass–dependent
ones. One way out is to implement decoupling by hand, integrating out the
heavy particles [28–30]. At energies above the heavy particle mass one uses
the full theory including the heavy field, while a different EFT without the
heavy field is used below threshold.

In the previous example, for µ > mf one would use the QED Lagrangian
with an explicit massive fermion f ; the corresponding one–loop β function

Here things are more like one might expect: the effect of heavy fermions on the renormalization
group evolution of low-energy parameters (the β function) decreases when the fermion is made very
heavy. In other words, particles “decouple” when they become much too heavy to produce at any
realistic collider experiment, as one might have hoped. (Of course, strictly speaking one arbitrary
choice cannot really be “more physical” than another arbitrary choice in any general sense, but it can
capture an issue like this more clearly.)

In fact, an oft-quoted “physics theorem” about decoupling is by Appelquist and Carazzone al-
ready in 1975: “heavy fields decouple at low momenta except for their contribution to renormalization effects”
[16]. A cautionary tale about this is the Gastmans-Wu-Wu paper from 2011 about the Higgs de-
cay to two photons [17] where they claimed the old Standard Model calculations don’t satisfy the
Appelquist-Carazzone decoupling theorem. The Russian response [18] explains very clearly why
Gastmans et al (and Gastmans is a well-known expert in an illustrious group of Dutch physicists!)
misunderstood the theorem, “as if the passage of time negates the knowledge of the past”.

4 Matching

However, now there is a confusing point: if we use a mass-independent subtraction like the standard
MS, how do we cross a mass threshold where new physical states become relevant, like the mass of
a heavy quark? You use a different β function above and below the threshold, this is called “match-
ing”. For example, the number of experimentally accessible quarks depends on energy (three for low
energy, six for high), and the beta function depends on the number of quarks. I expect that Schwartz
describes this well, but it is not very clear in Peskin & Schroeder. I like Georgi’s explanation [12], or
why not my explanation in the appendix of a dark matter paper [13].

8As always, even this statement requires qualification: as Polchinski warns in his book, we should specify whether we
mean“inclusive” versus “exclusive” cross sections depending on what processes you count (this is discussed in section 9.2
in the QCD review from PDG), and infrared (low-energy) divergences due to massless particles like gluons make some
cross sections infinite. The latter issue goes all the way back to the Rutherford cross section for scattering alpha nuclei from
gold atoms, that is infinite at zero scattering angle, but for a sort-of-physical reason: the Coulomb force has infinite reach,
related to the fact that the photon is massless. But there are ways to only consider infrared-safe observables, as discussed
in Weinberg and more recently by others [19]. Arkani-Hamed’s talk at a recent Simons Center workshop on string theory
and scattering amplitudes I went to, available online, discusses this in great detail.
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5 Grand unification

Some students have already seen the gauge coupling unification diagram (fig.6.8 in Martin [20]):

Figure 6.8: Two-loop renormal-
ization group evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid
lines). In the MSSM case, the
sparticle masses are treated as
a common threshold varied be-
tween 750 GeV and 2.5 TeV,
and α3(mZ) is varied between
0.117 and 0.120.
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6.5 Renormalization Group equations for the MSSM

In order to translate a set of predictions at an input scale into physically meaningful quantities that

describe physics near the electroweak scale, it is necessary to evolve the gauge couplings, superpotential

parameters, and soft terms using their renormalization group (RG) equations. This ensures that the

loop expansions for calculations of observables will not suffer from very large logarithms.

As a technical aside, some care is required in choosing regularization and renormalization procedures

in supersymmetry. The most popular regularization method for computations of radiative corrections

within the Standard Model is dimensional regularization (DREG), in which the number of spacetime

dimensions is continued to d = 4 − 2ϵ. Unfortunately, DREG introduces a spurious violation of su-

persymmetry, because it has a mismatch between the numbers of gauge boson degrees of freedom and

the gaugino degrees of freedom off-shell. This mismatch is only 2ϵ, but can be multiplied by factors

up to 1/ϵn in an n-loop calculation. In DREG, supersymmetric relations between dimensionless cou-

pling constants (“supersymmetric Ward identities”) are therefore not explicitly respected by radiative

corrections involving the finite parts of one-loop graphs and by the divergent parts of two-loop graphs.

Instead, one may use the slightly different scheme known as regularization by dimensional reduction,

or DRED, which does respect supersymmetry [113]. In the DRED method, all momentum integrals

are still performed in d = 4 − 2ϵ dimensions, but the vector index µ on the gauge boson fields Aa
µ

now runs over all 4 dimensions to maintain the match with the gaugino degrees of freedom. Running

couplings are then renormalized using DRED with modified minimal subtraction (DR) rather than

the usual DREG with modified minimal subtraction (MS). In particular, the boundary conditions at

the input scale should presumably be applied in a supersymmetry-preserving scheme like DR. One

loop β-functions are always the same in these two schemes, but it is important to realize that the MS

scheme does violate supersymmetry, so that DR is preferred† from that point of view. (The NSVZ

scheme [118] also respects supersymmetry and has some very useful properties, but with a less obvious

connection to calculations of physical observables. It is also possible, but not always very practical, to

†Even the DRED scheme may not provide a supersymmetric regulator, because of either ambiguities or inconsistencies
(depending on the precise method) appearing at five-loop order at the latest [114]. Fortunately, this does not seem to
cause practical difficulties [115, 116]. See also ref. [117] for an interesting proposal that avoids doing violence to the
number of spacetime dimensions.
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Note that the horizontal axis is a logarithmic scale. The same figure is fig. 22.1 in P&S, but there it is
somewhat harder to see the kinks (discontinuous changes of slope) in the couplings around where
the gauge groups are shown in green above. The kinks are precisely what I was talking about above:
that is where there is matching between the theory below the scale Msusy of superpartner masses and
the theory above that scale – and the change in slope is pretty big!

Unification of gauge groups as in the dashed (nonsupersymmetric) lines was first studied by
Georgi and Glashow in 1974, as discussed in Peskin & Schroeder. (They describe the Georgi-Glashow
paper as “remarkable hubris” in section 22.2). The basic idea is that the Standard Model product
group SU(3) × SU(2) × U(1) is unified to the bigger group SU(5). (Gravity is still left out.) In later
versions the unification group became SO(10) or even E6 or E8, as discussed in e.g. Polchinski Ch.
11. The renormalization group evolution of coupling constants so they can meet is a basic ingredient
in all of this. A related important point is that the evolution drawn above can receive finite but
important corrections close to the “threshold” of creating physical new particles, the scale where
coupling cross. Such additional finite corrections are called “threshold corrections”. The equation
that governs them is called the Georgi-Quinn-Weinberg equation and is discussed in Polchinski Ch.
18.

6 Confinement

One of Wilson’s expressed goals was to understand the confinement problem for quarks [15] (his
paper has over 4000 citations which is a lot for an old paper!). The problem remains unsolved, but it
is true that it was made clearer by the calculation of β(g) for QCD. The point is: QCD has β(gs) < 0
(Nobel Prize 2004), which means the coupling gs → 0 at high energyQ→∞ (“asymptotic freedom”),
as you saw in the picture above. But then conversely, gs →∞ for some low energy scale, which turns
out to be Q → ΛQCD ∼ 250 MeV, the scale of light hadrons. This signals confinement, though if
gs → 0 we can no longer compute in perturbation theory. The best current hope seems to be to
understand confinement in simplified (supersymmetric) theories through duality, the basic example
being Montonen-Olive duality (Polchinski Ch. 14).

6.1 Does QED exist?

As Nahm said in a talk, “perhaps the reason that QED is not so interesting mathematically9 is that
it doesn’t exist”. For β(g) > 0 as in QED, there is a well-known problem known as a Landau pole,
which is the opposite of the problem for QCD at low energy. For some extremely high but finite en-
ergy (over 10200 GeV!), the QED coupling (electric charge) may diverge due to renormalization group

9What he really said was “does not have an interesting moduli space”
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evolution. This is not the same as infinities of perturbation theory, this is a more or less “physical”
statement, which instead can be interpreted as saying that QED by itself doesn’t make sense. How-
ever also this statement is not clear, for example the issues are affected by duality, as for QCD above.
More physically, if QED is unified to an asymptotically free (β < 0) theory as in the plot above long
before the scale of the Landau pole, this issue never becomes relevant.

7 Is renormalization related to infinities?

No. Weinberg tries to be particular clear about this. Even in a theory where all momentum integrals
are finite, there is still renormalization. As Polchinski writes, the “true meaning” of the renormal-
ization group is to say how the theory varies with scale, not to solve problems with infinities. I
personally agree with this, but I’m not sure it’s widely agreed upon or appreciated in high-energy
theory outside of Weinberg’s hallway in Austin, Texas, where Polchinski used to have his office.

In fact, a somewhat more “modern” version of the Callan-Symanzik equation is the Wilson-
Polchinski equation from 1984 [23]. In 2009, Polchinski described it like this [22]: “The statement
of renormalization becomes just this differential statement: How many positive and how many neg-
ative eigenvalues does the flow operator have? Since the flow is differential, it only has a narrow
range of energies. Everything is finite. There’s no UV divergences, there are no IR divergences. And
so you can say the eigenvalues at small coupling have to be very close to the values at zero coupling
because there’s no place for any big effects to come from. And that’s the whole content.”

In another context, Polchinski described his early work like this: “...my own misspent youth. I used
to focus too much on rigor and formalism, and have become a much more creative and productive scientist since
learning, very slowly, to see through these to the physics.”

8 A little math

I can’t help point out that the renormalization group β function of the nonlinear sigma model (dis-
cussed at length in Peskin & Schroeder) was studied by for example Friedan in 1980 [21] related to
some work in string theory, and this in turn lead to what is known as “Ricci flow” in mathematics:

∂tgij = −2Rij (8.1)

where t is “renormalization group time” (essentially t = log(Q/M) from above), gij is a metric and
Rij is a Ricci tensor. The Ricci flow equation looks a little bit like a heat equation. Heat diffuses so
that uneven temperature distributions are smoothed out, but here it is curvature that is smoothed out.
This lead to Perelman’s solution of the Poincaré conjecture, the only one of the seven Clay problems
to be solved so far.
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