
Study questions for the book L. Conlon “Differentiable Manifolds” (2001)

Marcus Berg, 2018

These questions are much shorter than a homework problem, and meant to both clarify and
deepen some specific parts of the book. There is an “answers” PDF to accompany these study ques-
tions. When you study the book, please write down your answers to these questions, and afterwards
grade yourself using the answers PDF. If something is not clear, ask someone!

(Of course you could also just look up my answers right away, but where’s the fun in that?)
Before we start, here’s my attempt at a cartoon of the entire subject of differential manifolds:
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1 Chapter 1: Topological Manifolds

1. Basic topology. If you don’t have at your fingertips words like “homeomorphism”, “Hausdorff
space”, or “second countability”, don’t worry, but do some work: find a reference for basic
topology that seems to work for you. (First look around yourself, then look at my “answer”.)

2. Example 1.1.3. The point that Conlon calls “∗” I would call 0′ (zero-prime), to emphasize that
zero is a “double point” in this construction. What does that mean?

3. Other non-manifolds. Other standard examples to think about are whether all plane curves
are 1-dimensional topological manifolds. A priori you might think so, since subspaces of R2

are automatically Hausdorff and 2nd countable in the topology of R2. But there are important
counterexamples, we’ll return to this in Chapter 1.5 below.

4. Point of Chapter 1.1?. Don’t worry if you find Chapter 1.1 difficult: you don’t need a very deep
understanding of these ideas right now. By comparison to Chapter 1.2, what seems to be the
point of Chapter 1.1?

5. Coordinate notation (p.2). Why are the indices “upstairs” on the coordinates (x1, . . . , xm)? If
you didn’t know anything else you might have put (x1, . . . , xm).

6. Tangential direction (p.4). (This is a little bit of a trick question.) For the sphere, why is w ⊥ v
as Conlon says, isn’t tangent usually locally parallel to a curve at a point, not perpendicular?
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7. Bundle (p.4). Conlon mentions “abuse of terminology”. What is he saying that a bundle really
is then; isn’t p : T (Sn)→ Sn just the projection?

8. Parallelizable (p.5, but defined on p.97). Compared to our discussion of elementary differential
geometry of surfaces, what is the big deal if tangent vectors are not all linearly independent?

9. Klein bottle (p.8). If instead of shading you used “time” to embed the Klein bottle, what would
a non-self-intersecting “animation” of it look like?

10. Connected sum (p.9). Should you imagine the connected sumM1#M2 as gluing in a solid tube
or an empty tube?

11. Classification theorem (p.11). If you think about it, it’s rather amazing that all closed surfaces
can be found from connected sums of three “basic” surfaces (Theorem 1.3.5, for compact sur-
faces). So, to completely characterize the topology an arbitrary closed surface, you could just
specify one number and the answer to one yes/no question: what number and what question?
(First think about it, then look it up: Classification of closed surfaces). For later: does this
characterize the differential-geometry properties of the surface, like curvature?

12. Genus (p.12). We already talked about the Euler characteristic χ, which is a linear function of
the genus g. If the genus of S2 is 0 and the genus of a torus is 1, what is this function χ(g)?

13. Orientability, do Carmo vs. Conlon (p.14). Elementary books (like do Carmo) define ori-
entability in terms of being able to globally define a normal vector (e.g. as pointing “out-
wards”), which is easy on a cylinder (we did it) but impossible on the Möbius strip. What’s
better about Conlon’s definition via triangulations? Try to find an explicit triangulation of the
Möbius strip (Exercise 1.3.13) to see that it is also not orientable in this definition.

14. What is A? (p.14). Conlon doesn’t seem to define A. What does he mean by this, and what
letter of the alphabet is it anyway?

15. Cones (p.16). We will get back to cones later. In Example 1.3.22, the tip of a cone is a singular
point in the sense of surfaces, can you show that? If yes, can you see an example in this section
that does not have a singular point?

16. Coset (p.16). What is a left coset? (Conlon doesn’t really define it here, he just warns that the
“/” in G/H represents a different meaning of quotient space than in the cone example.)

17. Partition of Unity (p.20). Initially it can be a little hard to see the point of this construction.
It will be clearer later, but if you want you can take a peek in Lee’s book, Theorem 10.23 on
p.248-250 (in my edition), where he uses that the differential of the sum of the partition of unity
is zero. Why is that? (General comment: Lee’s book is a little easier to jump straight into than
Conlon’s. Conversely, that means Lee develops fewer new and exciting ideas!)

18. The topologist’s sine curve (p.21). Why is this plane curve not a homeomorphism onto its im-
age? (This example is in many basic topology books. Especially of you’re a physicist and have
not studied topology in detail, just read do Carmo’s definition of this curve (Ch.2.2, Problem
19), which is more explicit.)

19. Other plane curves. The previous example is a little contrived. What about other plane curves,
like a) the cubic cusp y3 = x2, or b) the lemniscate r2 = cos 2θ (a “figure eight” that looks like
this: ∞), are they topological manifolds? Can they be embedded in R2, or just immersed, or
not even that?

20. Functor (p.34). If you are not familiar with category theory (and there’s no reason you must
be), it might seem very unclear at this point why one would want to consider a “contravariant”
functor. For orientation: what is a “contravariant vector”, and does it also have the feature of
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reversing compositions F (f ◦ g) = F (g) ◦ F (f)? See e.g. the Wikipedia page about covariance
and contravariance of vectors, or your favorite reference.

(please turn page!)
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2 Chapter 2: The Local Theory of Smooth Functions

1. Definition of derivative (p.41). The definition of the derivative as a linear map might seem
somewhat surprising. Why can’t I differentiate a nonlinear function like x3 and obtain nonlin-
ear remaining terms like 3x2, like in basic calculus?

2. Differential map in basic calculus. There is a very nice and basic appendix at the end of Ch.2.
in do Carmo. take a look. As a trial question whether you need to review it, consider this, in
do Carmo’s notation: Take (u, v) in R2 and (x, y, z) in R3, a differentiable map F : R2 → R3, a
plane curve α with α(0) = p that gives a space curve β = F ◦α, and let the plane tangent vector
at p be α̇(0) = w. What is dFp(w)?

3. Differential map, in Conlon (p.50). This word will be used three times in different contexts.
See Conlon’s index1 for specific pages – take a quick look at those pages for orientation. Look up
the Wikipedia disambiguation page for “Differential (mathematics)”. What is another common
word for the differential in the sense of a map between manifolds? (To be clear: Conlon doesn’t
use the word I have in mind here, so to answer this question you’d have to look it up.)

4. Jacobian, here. In elementary calculus, sometimes “Jacobian” refers specifically to the case
n > 1, m > 1, i.e. a matrix that is neither a scalar nor a vector, but at least a 2 × 2 matrix. Also
the “Jacobian matrix” can be non-square, but the “Jacobian determinant” should be square.
What is Conlon’s convention?

5. Germ (p.41). “Germ” in a dictionary might say “1. a microorganism, especially one that causes
disease. 2. a portion of an organism capable of developing into a new one or part of one.”.
What is the intended setting for the metaphor?

6. Chain rule in basic calculus. Again, here’s a trial question from the aforementioned appendix
in do Carmo to see if you need to review this: Take F : R2 → R3 and G : R2 → R3 by F (u, v) =
(x(u, v), y(u, v), z(u, v)) and G(x, y, z) = (ũ(x, y, z), ṽ(x, y, z)). Write out the differential of the
composition map d(G ◦ F )p = dGF (p) ◦ dFp in terms of matrices; Conlon writes J(G ◦ F )(p) =
JG(F (p)) · JF (p). Quick, without thinking: what is the dimensionality of each of the three
matrices in this last equation?

7. Definition of LXY . The definition is 2.8.15, but then it’s a theorem (2.8.16) that LXY = [X,Y ].
The latter is an important statement that is not obvious from Conlon’s definition of LXY , so
read through the proof in the next two pages. Now: how is this logic different from e.g. the
Wikipedia page?

8. Sard’s Theorem. In 1st Ed, it was Appendix D. Do you understand why Conlon has moved it
into the main text?

9. Example 2.9.4. This example seems exotic at this point, but it is used nicely in 6.4.4. to avoid
exceptions with something useful. For illustration, look up a few space-filling curves, and find
an example of an infinitely long line that bounds a finite area.

10. The Hessian. It’s a pretty generic concept, after all it’s just the second derivative, which is use-
ful for the familiar calculus 2nd derivative test for maximum/minimum/saddle. For example
it’s used in Blob detection in computer science (yes, that’s a technical term). But on a general
curved manifold, is the Hessian really just the second derivative ?

1The “index” at the back of a book is an ancient custom that existed before documents had full-text search functions. It
is actually still occasionally useful, since it tells you where the author wants you to look, not just where it occurs. Conlon
also uses it to list most of his notation, in case you forget, and uses cute entries like “squiggly line”.
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3 Chapter 3: The Global Theory of Smooth Functions

1. Bookkeeping. The first three chapters involve what is sometimes called “bookkeeping”, a
collection of definitions that are important later but it’s hard to see the point right away. For
example, the discussion on p.89 (structure cocycles) is somewhat unusual compared to other
books. I suggest briefly reading ahead to Ch. 3.4, or look up C̆ech cohomology in the index. Can
you see some reason why it’s useful?

2. n-plane bundle (p.95). What is this?

3. Something simple. In the midst of all this (to most students) new notation, it’s good to have
a simple example. Construct a 2-plane bundle on the 2-sphere, i.e. a dimensional vector field,
in the two charts of the stereographic projection. Assume one chart, e.g. the one without the
north pole, has constant coefficients (Cartesian-like grid) i.e. X = ai∂i where ai are constants.
What does that mean for the other chart X = f i∂i, at the north pole? Think intuitively, or do a
calculation. (Reference: My supervisor’s book, Vol 1, p.192.)

4. G-structures (in section 3.4). When we get into some exciting stuff in Chapter 6, Conlon will
admonish you (p. 184) if you didn’t carefully think through section 3.4. So to get yourself
prepared, can you state one point of section 3.4?

5. k-plane distribution (p. 103) He uses this a lot later so it’s good to recall the definition. What is
it?

6. Immersions. As explained in do Carmo, p.435, the flat torus cannot be isometrically immersed
in R3, since because it’s compact, it would have a point of positive curvature. I’m not saying you
should “know” this at this point, but intuitively, why does the existence of positive curvature
preclude this isometric immersion?

7. Metric. We see in Exercise 3.5.9 that every smooth manifold admits a Riemannian structure, i.e.
an infinitesimal O(n)-structure, which by Exercise 3.4.16 is equivalent to admitting a metric hij
(which I usually call gij and so does Conlon in Ch.10, but here in Ch.3 it conflicts a little with
the cocycle notation gαβ .). So if there exists a metric on every smooth manifold, can you think
of any reason why we would make an effort to define things irrespective of metric?

8. The Schwarzschild metric. Conlon doesn’t actually mention this, but it’s the most “important”
example of a metric in general relativity so let’s start here. It describes a Black hole, i.e. not even
light can escape. More specifically, if I tell you it’s static (time-independent) and spherically
symmetric, and thinking about how our solar system formed, why does being static make the
Schwarzschild metric inapplicable to actual astrophysical black holes? Also, what else than
(simplified) black holes does it describe?

9. The Friedmann-Lemaitre-Robertson-Walker (FRW) metric. Similarly, what is this?

10. Theorem 3.9.4. There is a generalization to all positive degrees in Theorem 6.5.7. (This is not a
question.)

11. Winding number. (p.123). This comes back later in more generality. But for now, the Wikipedia
page is quite instructive, contrast turning number as mentioned on that page. What is meant by
the “degree of the tangential Gauss map”?

12. Induced Metric gij . (p.127) The embedding we called x(u, v) for surfaces is called ξ (no boldface
or vector arrow). The first fundamental form gij is also known as the induced metric, i.e. it
is induced from an inner product on tangent space. This can be confusing since the second
fundamental form `ij is also “induced” by something. Can you characterize the difference?

13. Bad joke. What’s green and determined up to isomorphism by its first Chern class?
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4 Chapter 4: Flows and Foliations

1. Conlon’s little introductions. (p.131) There are only a few short sentences at the beginning of
each chapter, but they are very insightful, for example what are “(global) flows” and “folia-
tions” in terms of differential equations?

2. First order?. (p.131) We defined our vector fields as 1st order differential operators (and showed
that their Lie brackets are also 1st order differential operators). In the theory of ordinary (single-
variable) differential equations, isn’t it a huge restriction that we’re only going to consider 1st
order?

3. Local flows in Ch. 4 (p.131) vs. local flows in Ch.2 (p.73). What’s the difference, isn’t a local
flow always a local flow?

4. Flows vs. flow lines. (p.131) The flow line is given in terms of the flow sαq (t) = Φα
t (q) for a

point q. What does this ridiculous-looking equation really mean, doesn’t it just say the same
thing twice?

5. Complete vector field (p.134) Did you get a sense what this means now?

6. Commuting flows. (p.142). Corollary 4.3.4 requires an explicit calculation in my mind (e.g. as
in Nakahara fig. 5.13); try to think of how you would do it, at least pictorially.

7. Matrices. (p.143) I postpone most of the discussion of matrix groups until Ch.5. It’s good at
this point to back up to Example 2.8.21. In particular, how can a general (i.e. possibly singular)
matrix be a tangent “vector” to a nonsingular matrix?

8. Example 4.5.4. As this is really the only PDE “in evidence” (Conlon’s words in the little in-
troduction), make sure you understand this, and how it leads into the key theorem 4.5.5 (The
Frobenius theorem). For example, what does “overdetermined system of PDE” mean? And,
what is the foliation here (by the way, where does this work come from)?

9. Figure 4.5.1. (p.143). Do you get this figure? For example, where is Conlon’s parameter (“time”)
t in this figure? Do normal vectors to these surfaces point in some coherent direction?

10. Flow in general relativity: Penrose-Hawking. In general relativity, people talk about a set of
integral curves of a nonvanishing vector field as a “congruence”. One key equation there is
the Raychaudhuri equation, which was a lemma in the proofs of Penrose-Hawking singularity
theorems. If you are interested in these things (but only then), how is this illustrated in the
movie Theory of Everything?

11. Gradient. Chapter 4.2 is marked with a star, but at least read through it. Do you understand
what Conlon means that we should first fix a metric to get a gradient: could there be more than
one gradient? Is there any analog of this “ambiguity”2 in ordinary calculus? One reference on
undergraduate calculus: Jones’s notes from Rice. He differentiates between the usual (ambient)
gradient of a function g that defines the surface (as a level set), that would be the analog of our
manifold, and the “intrinsic gradient” of a function f (that he neatly denotes with a filled-in
nabla∇). Given this, what do you think Jones means by “intrinsic” then?

12. The “clock” foliation. The ADM formalism is the foliation in general relativity: we split up
spacetime in space and time. This needs to be done with care, in particular it is not a simple
product structure space × time. See Choptuik’s notes on 3+1 split for those who are interested.
The detailed derivation is tedious but interesting! Still, here’s a quick question: he derives the
Hamiltonian constraint. Can we set H = 0, i.e. choose energy to be conserved and zero?

2It’s not really an ambiguity, just different questions that can be asked, but let’s call it that here.
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5 Chapter 5: Lie Groups and Lie Algebras

1. Lie algebra. Often in basic physics, one views the definition of the Lie algebra as the matrix
commutation for the matrix group. What’s the problem, and what is the generalization?

2. Exponential map. Another thing that is often done in basic physics is the definition of expo-
nential map through the taylor series. What’s the problem, and what is the generalization?

3. Hilbert’s 5th Problem (p.152). What was Hilbert’s fifth?

4. Cartan classification. We won’t discuss it here, but for orientation, what is the content of
Killing’s and Cartan’s classification of semisimple Lie algebras?

5. Dynkin. If you actually looked at the previous link, you wouldn’t have missed Dynkin di-
agrams and associated ideas, that are an amazingly useful tool for Lie algebras, not just in
the above classification, but also in generalizations. But what very basic calculational problem
about Lie groups did Eugene Dynkin clear up? Hint: exponential map.

6. What special about special orthogonal?. We/Conlon sometimes broadly talk about the or-
thogonal group O(n) as a “group of rotations” or something like that. But what about the
special orthogonal group SO(n), isn’t that the “group of rotations”?

7. Isotropy/stabilizer/little group. In Swedish we say “a dear child has many names”. Conlon
prefers isotropy group, I prefer stabilizer or little group. (In physics, “(Wigner’s) little group” is
probably more common.) The stabilizer of a base vector from the origin of R3 to the north pole
of S2 is O(2). What is a stabilizer of O(3, 1), the Lorentz group? (Hint: picture the spacetime
diagram with a photon travelling at 45◦ up to the right; what two possibilities are there for a
particle to travel at constant velocity?)

8. Is S2 a Lie group?. The Lie algebras of O(n) and SO(n) are the same, and have dimension
3 · 2/2 = 3, one too many to be S2. There is a Lie group of dimension 2, the affine group, but
it is not S2. But if the subgroup mentioned in “stabilizer” above is normal, we can make a nice
quotient. Couldn’t we find a normal subgroup of O(n) to quotient by to make S2?

9. Stiefel manifold (p.182). Exercise 5.4.15. This may seem little tangential at this point (!) but
would be very useful later to have some feeling for: what are the “lowest” Stiefel spaces
Vn,1(Rn) and Vn,1(Cn)? What are the “highest” Stiefel spaces Vn,n(Rn) and Vn,n(Cn)? What
do I mean by ”lowest” and “highest”, anyway?
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6 Chapter 6: Covectors and 1-Forms

1. Egg crates. In the physics book “Gravitation” by Misner et al (that thrives off of obscure vi-
sualizations) one-forms are called “egg crate structures”. This is discussed for example on the
Wikipedia page Linear form. In this visualization, what does the duality 〈β,w〉 between a one-
form β and a vector w count?

2. Covector vs. cotangent vector (p. 183-186). Are they the same thing?

3. Corollary 6.2.5 (p.186). A physicist who didn’t read very carefully would have said this sounds
like “every gauge potential is pure gauge”, ω = df for every one-form ω, and protested that is
wrong, since there would be no electric or magnetic fields. What is the physicist missing? (If
you don’t know any physics, instead answer: why does Conlon keep writing the x on dfx?)

4. Exterior derivative. What really happened here, how is df : Tx(M) → R different from d :
C∞(M)→ A1(M)?

5. Leibniz rule for 1-forms (p.189). Lemma 6.2.15 looks pretty familiar from calculus: “multiply
by dt” the product rule for derivatives d(fg)/dt = fdg/dt+ gdf/dt, then apparently we get the
Leibniz rule for 1-forms (Lemma 6.2.15). But if so, what was the problem with “infinitesimals”
in elementary calculus?

6. Monotonic change of parameter? (p.190). Conlon says the change of parameter does not need
to be monotonic. This seems not to agree with Lee’s book, or does it?

7. Fundamental theorem of calculus? (p.190). Did we prove the fundamental theorem in Lemma
6.3.3, or merely use it?

8. Path-independence (p.192). Can you think of an example of a 1-form a(x, y)dx+ b(x, y)dy that
has path-dependent (Definition 6.3.8) line integrals in R2? (by Theorem 6.3.10, if you think of an
example, you have essentially solved Exercise 6.3.5 for R2, though the calculation to show you
have in fact found one is slightly different for the two characterizations – how?)

9. Inexact differentials in thermodynamics. In thermodynamics, one often uses misleading nota-
tion δQ or d̄Q for inexact differential (here d̄Q represents heat energy transfer, i.e. heating things
as in the ordinary sense of the word). If I tell you that the intention of this notation is to make
it look similar to the differential dQ, but at the same time I emphasize that d̄Q is not the dif-
ferential of any map Q, why on Earth would anyone want to use notation that only says what
something is not? (Bonus question if you know some thermodynamics: why can’t we get away
with just exact differentials? For example, why would power plants not be able to operate if
heat and work were exact, dQ and dW ?)

10. Inexact differential made exact?. By standard theory of ordinary differential equations, one
can in principle always find an “integrating factor”, a multiplicative factor by which an inexact
differential can be made exact. (Compare Exercise 6.3.5 for R.) Is this possible in R2? For
ω = a(x, y)dx + b(x, y)dy we should have ∂a/∂y = ∂b/∂x for ω to be exact. Let’s say we
don’t. But if we multiply ω with c(x, y), we instead have ∂(ca)/∂y = ∂(cb)/∂x, which might
conceivably have a solution for c. For example, if we make the ansatz c(x, y) = c(x), what is
now the differential equation to satisfy? Restricting even more, we could try a power, i.e. c(x) =
xα, what is the differential equation now? Does it seem plausible to you that that equation
could be satisfied for cω, even if ∂a/∂y = ∂b/∂x for ω was not? (Bonus question if you know
some thermodynamics, or if you just followed the previous link: is there an integrating factor
for d̄Q that directly relates heat to some exact differential that describes some thermodynamic
property, i.e. one that unlike heat can actually be used to characterize a state?)
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11. Arctan and polar angle (p.193). Why does Conlon need to be so pedantic about whether the
polar angle θ = arctan(y/x) or θ = − arctan(x/y) (note the change of y/x vs. x/y)? It’s probably
clear to you that trying to define the coordinate transformation from Cartesian x, y to polar
coordinates r, θ by a single formula θ = arctan(y/x) has a problem at the origin, and possibly
at the positive real axis (y = 0, x > 0) where there’s the branch cut corresponding to θ flipping
back from 2π to 0, but does it have even more problems? Hint: what angle θ would you like to
have for (x, y) = (1, 1) (first quadrant) vs. (x, y) = (−1,−1) (second quadrant)?
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7 Chapter 7: Multilinear Algebra and Tensors

General comment: this chapter has a lot of “bookkeeping” that is very useful later but the practically-
minded reader may want to skim through the later parts of Chapter 7 and return later as needed.

1. Decomposable (p.218). Often higher forms are defined directly by the wedge product ∧, in-
stead of first defining the more general tensor products and exterior algebra as in Conlon. His
approach is more generalizable and puts other things on the same footing, but on p.218 in
Conlon one could get the impression that the “indecomposables” are differential p-forms that
cannot be expressed by wedges of lower-dimensional forms, but this is not what he is saying.
Convince yourself that by indecomposable he means for example v1 ∧ v2 + v3 ∧ v4 in R4, so we
see that we could have gotten away starting from wedging right away. To convince yourself,
also ask whether there any indecomposables for Rn for n < 4, e.g. what about v1 ∧ v2 + v2 ∧ v3
in R3?

2. The metric tensor. Is the metric tensor “measurable in the sense of physics” (Conlon talks
about “measurements” on p.303), i.e. it is “physical”?

3. Exterior products of vectors (p.222). Can we wedge together two vectors ∂/∂xi and ∂/∂xj with
the wedge product ∧, or does that only make sense for 1-forms?

4. Covariant and contravariant tensors, forms, symmetric tensors (p.235-236). This is the punch-
line of Chapter 7. Can you state the definitions in words? What does each of the four types
of objects look like in local coordinates, e.g. for two basis objects? How many independent
components do they have (cf. Lemma 7.2.13)?
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8 Chapter 8: Integration of Forms and de Rham Cohomology

1. Pre-Poincaré Lemma. Exercise 8.1.9 is useful. (This is not a question.)

2. Summation. (p.239). Why does Conlon put a sum, aren’t we using the summation convention?

3. Singular vs. simplicial homology. (p.250). The “older” concept is simplicial homology. For
us, the concepts are very similar. But, name one difference between singular and simplicial
homology.

4. Ch.8.4-8.5. We won’t use details of this, but skim through it. Note for example Exercise 8.5.10,
cohomology of n-spheres. For example for S2, can you guess which cohomologies Hk(S2)
are nonempty (i.e. out of 0-forms, 1-forms, and 2-forms)? To have intuition, pre-empt the de
Rham theorem (Theorem 8.9.1, which Conlon also pre-empted for you, in Theorem 8.2.21) that
says that you can think of homology instead of cohomology. (By the way, if homology is more
intuitive, and they are somehow equivalent, why do we need cohomology?)

5. Degree theory. (p.274). Conlon has been building up to this subsection for quite a while.
All the “degree theory” sections are starred (∗), which is a little surprising, since they are less
advanced than some of the unstarred subsections, but I think it’s because they are logically
somewhat separate and most of the results are produced in other ways in the main line of
argument. But surely we can’t resist Theorem 8.7.5. In words, how does it show that S2 does
not have a nowhere zero tangent vector field?

6. Poincaré duality. (Ch.8.8). In the answer to the question about Hk(S2) above, especially from
its generalization for Sn, you might have noticed a pattern: could possibly Hn−k = Hk, where
n is the dimension of the manifold? What does Conlon say about this?

7. Poincaré-Hopf theorem. How does the statement of “half the Poincaré-Hopf theorem” in Ex-
ercise 8.8.6, part 6 seem to relate to the Poincaré-Hopf theorem we know and love from do
Carmo? (Hint: take a quick look at Exercise 8.9.14, part 4. There is bonus HW about this.)

8. BRST cohomology. Just for orientation, read a few minutes about BRST cohomology at for ex-
ample nLab (By contrast, the Wikipedia page is very difficult when it gets into detail, but its first
paragraph at least gives some words).3 Can you say in a few words what BRST cohomology
seems to be?

3For the student interested in physics, I will put up my BRST notes at tp.hotell.kau.se/marcus/notes/stringvideos.html
at a later point.
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9 Chapter 9: Forms and Foliations

1. Ideal. What is an ideal?

2. More equivalences in Frobenius theorem. The logic here is clear (in my opinion) but slightly
subtle, so try to spell it out: why does ω([X,Y ]) = 0 imply the k-plane distribution E is involu-
tive (Frobenius)?

3. A simple example. Some of Chapter 9 is pretty heavy-going, not too surprising since the
promise is lofty: pursuing these ideas would lead to a geometric understanding of PDEs, at least
in simple examples. So, let’s consider the pages for Integrable systems and Integrability con-
ditions, where they give the following example. Take the 1-form θ = xdy + ydz + zdx in R3

without the origin, we find θ ∧ dθ 6= 0. The two claims, that we will check now, are the fol-
lowing. 1. By results in Ch.9, there is no foliation by two-dimensional leaves. 2. But along the
curve s : t 7→ (t, c, e−t/c), the form θ = 0, so this is an integral submanifold (leaf of foliation), i.e.
traced out by a flow of a 1-dimensional vector field.

First check that indeed θ ∧ dθ 6= 0 generically, and that θ = 0 along the curve s. Then, relate the
statements about the existence or nonexistence of 1-dimensional and 2-dimensions integrable
distributions to Exercise 9.2.13, where dω = η∧ω for some 1-form η and a nowhere zero q-form
ω on the normal q-plane bundle.

This is supposed to illustrate a typical good use of a resource like Wikipedia: don’t take any
details for granted, but use it to get a quick idea of a simple example, then make sure you can
define it precisely yourself using established (e.g. textbook) rules and notation, and work it out.

4. A more interesting example. In my video on differential forms and cohomology, make sure
you can reproduce the statement about the heat equation (but watch out for the typo in the last
term, at the time of writing: df ∧ dt should be df ∧ dx).

5. A closed, nonsingular 1-form? This starred subsection is tough, but let’s at least extract one
piece of information, that we can try to understand without proof: does any compact, con-
nected, boundaryless manifold have a nowhere zero (“nonsingular”) and closed 1-form ?
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10 Chapter 10: Riemannian Geometry

1. Gauss map. It may be useful to contrast with do Carmo’s discussion. What problem is caused
if the surface is nonorientable?

2. Gauss curvature. The Wikipedia page is nice. In particular, what’s a single formula that cap-
tures the Theorema Egregium, one that Gauss cannot have given? And by the way, why is
curvature called K or R, not something like C for “curvature”?

3. Second fundamental form. On its Wikipedia page, if the ambient space is curved, there is an
extra term compared to Conlon’s (10.3). Why is this?

4. Sectional curvature. This is a slight “generalization” of Riemann curvature: Wikipedia page.
Why the quotation marks?

5. Jacobian cocycles and integrably parallellizable. Reviewing Example 3.4.8 (p.100), how does
that relate to the present discussion?

6. Flat = integrable (p.339) In Lemma 10.6.4, what isM(n), and how is that different from M(n)?
More importantly, what is the lemma about?

7. Einstein’s equation. Sometimes when non-physicists hear “Einstein’s equation”, they assume
it’s E = mc2. But it’s not: it’s his equation for the geometry of spacetime given a matter
distribution: Rij − 1

2Rgij = 8πGNT
matter
ij , where I won’t attempt to explain the right-hand side

(the “stress-energy tensor”), but for zero matter, Tmatter
ij = 0, the equation readsRij− 1

2Rgij = 0,
that we have a chance to understand in Chapter 10. Now it’s purely geometry, but what are Rij
and R? As stated in the convenient Wikipedia list, the Ricci tensor Rij = Rkikj is “essentially”
the only nontrivial contraction of the Riemann tensor Rijkl in local coordinates. What does this
mean, and is R here the Riemann tensor (without indices) R(X,Y )Z as defined in Conlon?
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11 Chapter 11: Principal Bundles*

1. Yang-Mills theory. As Conlon says, Yang-Mills theory is a main motivating factor, so it makes
sense to read a little about it for orientation, even though the details are beyond the scope of a
course like this. There is a Clay mathematics problem to construct a rigorous Yang-Mills theory.
If it’s an unsolved problem to construct it, why are we studying it in a core course?

2. Holonomy. A curious student might have taken a quick look at the Wikipedia page about
holonomy already in Ch.10, but since much of the discussion at that page is about principal
bundles, it probably didn’t make too much sense. Even if the details still seem difficult, at
least you can enjoy “Berger’s list”. What does it say? And can you see a nice way to express
holonomy in terms of curvature?

3. Homogeneous spaces. (Example 11.2.7, p.352) You can make a principal H-bundle by the pro-
jection p : G → G/H of a Lie group G, with H a closed subgroup. Can you give an example,
for example what is the maximal compact subgroup of Gl(n)? Of Gl+(n) (positive determi-
nant)? How can you see here that the principal bundle construction is useful, i.e. could you
have viewed G/H as a vector bundle?

4. A “trivial” example. As Nakahara discusses, perhaps the simplest possible example is a trivial
G = R(additive group)-bundle over M = R2 − {(0, 0)}. Let M have coordinates (x, y). Use
the 1-form η from Example 6.3.12, and write a connection 1-form ω = −η + df . View tangent
vectors ṡ of curves in the plane as projection pushforwards p∗(X) of vectorsX that are tangents
to curves on the whole bundle (which is 3-dimensional), so the “lifted”X can be be expanded in
3 dimensions asX = ẋ∂x+ẏ∂y+ḟ∂f . Find the horizontal lift of a unit circle s(t), i.e. a space-curve
in 3 dimensions that is “projected out” by the connection: ω(X) = 0. This amounts to solving a
very simple ODE. Pick the initial vector X = ((1, 0), 1). Is this space-curve “horizontal” in any
geometric sense? How does the group G act on the space-curve? (Compare definition 11.4.12:
ω|H = 0 and ω|V = id. If we give ω as here, we can then define H = kerω. )

5. Almost trivial example: Magnetic monopoles, and notation. After introducing the formalism
of horizontal and vertical vectors of T (P ) = V⊕H in his main section 11.4, Conlon does not give
any concrete examples. My main example is the G = U(1) magnetic monopole, section 9.5 and
10.4 in Nakahara. Take a look at the Wikipedia page.4 To connect a little to Conlon’s notation:
what does he mean by s] and s[? How are they related, to each other and to the connection
1-form ω? How does the G = U(1) magnetic monopole relate to the gauge transformation A 7→
A + dλ introduced earlier? Compare it to the previous example: in what sense is even this
example almost trivial?

4Don’t miss the MoEDAL experiment at CERN, one of the experiments is looking for monopoles in the real world.
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12 Appendix B: Inverse function theorem

(As mentioned above, a quick more elementary review is in do Carmo’s book. For an intermediate
version, consult Lee’s book.)

1. Banach space. It’s a complete normed vector space. We won’t need most of the details, but
you’re interested, the Wikipedia page Banach space, it says “Any Hilbert space serves as an
example of a Banach space.” The wording implies there are Banach spaces that are not Hilbert
spaces, so what’s an example? It may be useful to contrast with the book “Analysis, Manifolds
and Physics” (see Course Outline, recommended books)

2. Bad joke. What’s yellow, complete, normed, and linear?

15

https://en.wikipedia.org/wiki/Banach_space

	Chapter 1: Topological Manifolds
	Chapter 2: The Local Theory of Smooth Functions
	Chapter 3: The Global Theory of Smooth Functions
	Chapter 4: Flows and Foliations
	Chapter 5: Lie Groups and Lie Algebras
	Chapter 6: Covectors and 1-Forms
	Chapter 7: Multilinear Algebra and Tensors
	Chapter 8: Integration of Forms and de Rham Cohomology
	Chapter 9: Forms and Foliations
	Chapter 10: Riemannian Geometry
	Chapter 11: Principal Bundles*
	Appendix B: Inverse function theorem

