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These notes discuss [2] (and it has a summary paper [1]). I will also mention the more recent [3].
If you haven’t seen the Feb 2022 Matt Schwartz talk “What is the S-Matrix?” on YouTube yet, you are
missing out!

The point of Hannesdottir-Schwartz [2] is to define the hard S-matrix:

SH = ΩH†
+ ΩH

− where ΩH
± = lim

t±→±∞
eiHt±e−iHast± (0.1)

The question then becomes, how do we define the asymptotic Hamiltonian Has? The idea is [2], p.7:
“the asymptotic Hamiltonian should be defined so that the asymptotic evolution of the states is independent
of how they scatter. It is possible to define Has this way due to universality of infrared divergences in gauge
theories”. To me, this seems like an important statement that I had not appreciated.1

They call their (0.1) “the hard S-matrix”. But this makes it sound kind of trivial, since we already
know how to do hard scattering. The point is more how exactly to implement soft/hard factorization
order by order in perturbation theory, not to just do hard.

One example of that is that in dimensional regularization, diagrams where a hard vertex in the
interaction region. In fact they say in the abstract: “In dimensional regularization, where the hard cut-
offs are replaced by a renormalization scale, the contribution from the asymptotic evolution produces scaleless
integrals that vanish.” For a review of scaleless vs. scaleful integrals, see appendix.

The Weinberg picture of real emission cancelled by virtual emission can be viewed as arising from
cutting a loop diagram, e.g. a two-loop vacuum polarization diagram with an electron-positron loop
that has a photon in it. To see this we need three different cuts, one “sideways”. One way to think
about the strategy here is that there are no “sideways” cuts, everything is “straightened out”. This
way of thinking about it also shows the use of splitting-apart as the converse of combinatorics.

1 Basic point

First recall 〈out|S|in〉Heisenberg = 〈out,∞|in,−∞〉Schrodinger. The hard S-matrix is

SH = ΩH†
+ ΩH

− = Ωas
+Ω†+Ω−Ωas†

− = Ωas
+SΩas†

− (1.1)

where
Ωas
± = lim

t→±∞
eiHaste−iH0t (1.2)

Note that eiHast is backwards in time.
To use (1.1), insert intermediate Heisenberg states:

〈out|SH|in〉 =

∫
dΠout′

∫
dΠin′ 〈out|Ωas

+ |out′〉〈out′|S|in′〉〈in′|Ωas†
− |in〉 . (1.3)

Call 〈out′|S|in′〉 the central region and the others the asymptotic region. In fig. 3 they show that we can
use a standard calculation with specific external states, from t = −∞ to t =∞. Then the asymptotic
regions extend that to zero in both directions so we get t > 0 and t < 0. They call this “backward in
time”, but they seem to actually mean backwards in the diagram, since t > 0 goes to t = ∞, and
t = −∞ goes to t = 0, which in both cases is the direction of increasing t.2 The key point is that since
either asymptotic region is only a “half-space”, the usual delta functions become “incomplete”, just
propagators. The asymptotic propagators can then either combine with the central region, or more
unusually, the delta function may get shifted and give zero instead of something.

1I believe one example is the universality of Altarelli-Parisi splitting function, as in Schwartz’s book Ch. 36.4.2, where it
is explained as a consequence of factorization.

2I don’t think we actually need to say that t = 0 is the same on both sides, but I’m not sure.
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1.1 Connection to dressed states

If we want to take dressed states |ψd〉 seriously, the photons in the virtual cloud have different mo-
menta, so |ψd〉 is not an energy eigenstate. (Then one could ask, how did Faddeev-Kulish – as re-
viewed in Schwartz’s talk above – view these states? Apparently, for k small.) The difference in the
strategy above in practice is the word “specific”. In each calculation, we have a specific state, that
could maybe be viewed as a combination, but this is not necessary.

If we define dressed states as

|ind〉 = Ωas†
− |in〉 , |outd〉 = Ωas†

+ |out〉 , (1.4)

we have
〈out|SH|in〉 = 〈outd|S|ind〉 , (1.5)

that is, the matrix elements of the hard S-matrix are just matrix elements of the standard S-matrix
between dressed states.

Dressed states are coherent states, somewhat like in quantum optics, so also called Glauber states.
[2]. We find on p.11: “although the dressed state picture fits in naturally with the construction of SH we have
presented, we doubt that thinking of the dressed states as physical states will ultimately be profitable.”. So
what are they saying, then? Use eq. (1.3), where there is never any mention of dressed states: there is
only the ordinary S-matrix sandwiched between asymptotic evolution.

It is interesting to compare this to coherent states in string theory, where it is the standard ap-
proach: eipX |0〉 is a coherent state in the worldsheet theory, but a particle-like state in spacetime.

1.2 Relativistic time-ordered perturbation theory (TOPT)

Time-ordered perturbation theory (TOPT) is not taught so much. First to clarify a basic point: rel-
ativistic speeds are allowed here. The only thing we could argue about is how “manifest” Lorentz-
invariance is, not whether the theory as a whole respects relativity. For TOPT, both Hannesdottir-
Schwartz and Schwartz’s book refer to Sterman’s book (see appendix), with two changes ([2], p.19):

• The overall δ(Ef − Ei) is replaced by a propagator i/(Ef − Ei + iε): starts at t = 0, not t = −∞.
• Evolution backwards in time gives complex conjugation: ig → −ig, i/(E + iε)→ −i/(E − iε).

TOPT gives more diagrams than Lorentz-invariant perturbation theory, some factorial of the
number of vertices. But each calculation is similar to each other (not to the standard Lorentz-invariant
diagram, but to each other), so this should lend itself well to automation.

2 Example in φ3

This example is maybe good practice, but the assumption (Has = H) and the result (S = 0) are at first
confusing. Remember this is a one-loop correction to tree-level.

The prescription is moving from the left:

−i
(E′out − niε)− Ecut

(2.1)

where n is the number of vertices that have already been crossed in the asymptotic region, E′out is the
total energy of particles on the left. (If on the right, then no prime.)

To me, the points are:

• TOPT does not impose energy-momentum conservation until all is added
•minus signs matter, so this is more refined than the “cross section method”.
• The states at the 2nd cut are evolved from the far future backwards to the cut.

2



The 2nd point to me clarifies that minus signs (and more generally, phases) are crucial. In common
notation, 2i0 = i0, but 2iε 6= iε. What I mean by that is when adding up TOPT diagrams, the factor
of 2 could matter.

Some people in this discussion have some interest in semiclassical numerical simulations. There,
there might be a concern that we need to prepare a state to infinite precision for it to evolve to pre-
cisely the desired state. Here, that is not a concern directly, but it’s an interesting question.

Another point is: wasn’t this whole business only guaranteed to work for gauge theories? Yes,
but with Has = H it also works for scalar theories. The φ3 example is just an example.

3 Example in QED

“Deep inelastic scattering” (although nothing is inelastic): e−γ∗ → e−, where γ∗ means the photon
is highly off-shell3, p2 = −Q2 6= 0. Hannesdottir-Schwartz first go through a useful check with
cutoffs that the total hard matrix element M̂ is IR finite. But then they say this is clumsy. In pure4

dimensional regularization, there is only the graph with vertices in the central region, the others are
scaleless and vanish.

Exercise 1: show by example that scaleless Feynman integrals vanish. (Solution in appendix.)

The only novelty then seems to be that the field strength (wavefunction) renormalization factor Z can
seem to depend on the scale Q, which is really shorthand for non-dynamical soft labels p−1 = n̄1 · p1,
p+2 = n̄2 · p2 (see appendix C for more on soft-collinear effective theory, or SCET). The only diagram
is “A” in the central region:

MA = iM0(2π)dδ(d)(pi + q − pf )
α

4π

(
1

ε2UV

− 2

ε2
− 4

ε
− 2

ε
ln
µ̃2

Q2
− ln2 µ̃

2

Q2
− 3 ln

µ̃2

Q2
− 8 +

π2

6

)
+O(ε)

(3.1)
where µ̃2 = 4πe−γµ2 and ε = εIR.

Exercise 2: computeMA, or some simplified version. (Solution in the appendix.)

Now use the check above that the hard matrix element M̂ is IR finite. Set εUV = εIR = ε, and define
the Z factor to eat up the UV divergences, as usual. This is like the Z depending on Mandelstam s.
This at first seems weird, more on this in the next paragraph. The result M̂ , now through dimensional
regularization, is manifestly UV and IR finite.

One way to think about what is happening is we are allowing instantaneous5 scattering at fixed
order. This is really an effective field theory argument: we incorporate into the formalism the fact
that we are unable to resolve the hard event. “While S-matrix elements are smooth, differentiable functions
of momenta, the smoothness is lost in the soft power expansion generating SH. Thus hard scattering, from
the point of SH looks instantaneous and non-local, like a sharp, non-differentiable cusp at the hard vertex.
In other words, the additional renormalization required in SH is the same as the need for renormalization
associated with cusps in Wilson line matrix elements. The non-locality of SCET (on hard length scales) and
cusp renormalization is discussed more in [60,61]. Here Ref. 61 are SCET lecture notes, my Ref. [12].

I propose as an extreme example of this the matching of field theory to string theory. The low-
energy limit α′ → 0 gives field theory Feynman diagrams. For example, eq. (H.6) in the appendix.
Some properties of that field theory are lost when we neglect higher-derivative corrections. If you
think of string theory as a UV completion (the analogy of the full S-matrix here, which is smooth),
it would be a real problem for string theory if we could not connect it to standard field theory in
particle physics, since it has experimental support (the analogy of the hard S-matrix here, which is

3This sounds like a departure from the on-shell philosophy. But this is the hard process in the central region, that is to
be treated as usual. Photons/gluons/gravitons in the asymptotic regions will be on-shell, as in the Glauber gluon below.

4not pure seems to mean using dim.reg. for UV divergences, and off-shell-ness for IR divergences [4].
5In Swedish, instantaneous is “ögonblicklig”, literally eye-view-ish, or maybe eye-blink-ish.
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non-differentiable). In other words, it is clearly worth developing efficient methods that don’t resolve
all energy scales.

4 QCD: e+e− → jets

Here we start seeing some meat so maybe this is the best example. The problem is then that most of
us don’t know enough QCD! For example what thrust is (e.g. by Schwartz in [6]).

4.1 Remedial QCD: jets

Even if you are not interested in the physics of hadron jets (and why not, by the way?), Schwartz
in his book (e.g. chapters 20.2 and 36.3) makes a pretty clear point that it is useful to think broadly
about the emission of jets of hadrons in this context. For final-state photons in QED, you can always
mumble an excuse about finite detector resolution. But hadron emission in QCD is a clearly visible
and in itself an important signature of low-energy physics. In particular, if a jet has energy Q and
invariant mass m, the ratio λ = m/Q is an expansion parameter like in the multipole expansion in
electrodynamics, where O(λ0) only takes into account the net charge, and O(λ) takes into account
how charges are distributed.

4.2 Remedial QCD: thrust

Consider the 2-jet rate in e+e− → hadrons. Such a rate depens on the jet definition, which depends
on how the soft and collinear momenta are handled. It depends not only on the hard process, but also
on the evolution of the jets after the hard scattering. (Historical note: this comes from “B-physics”
studies of b→ sγ decays.) The jet mass scale p ∼ Q

√
1− T with the thrust T :

T = maxn

∑
i |pi • n|∑
i |pi|

(4.1)

Near T = 1 there are terms ∼ αs log2 τ , where τ = 1− T . To get a feeling, for 3-parton events

τ = min(s, t, u) (3-parton only). (4.2)

When τ ∼ 0.2− 0.5, the events are more spherical. (Perhaps compare sphericity in AdS/QCD [7].)
The e+e− → q̄q cross section is boring, as the thrust is constrained to be T = 1:

dσ

dτ
= σ0δ(τ) (4.3)

Skipping some apparently important details, we have with the old-school “CTTW method”:

1

σ0

dσ2
dτ

= δ(τ) + ᾱ

[
−4 log τ − 3

τ

][τ,1]
?

(4.4)

where ᾱ = 2αs/(3π), and ? is the star-distribution:∫ a

0
dx[f(x)]

[x,a]
? g(x) =

∫ a

0
dxf(x)(g(x)− g(0)) (4.5)

that is, when you integrate it against something, you have to subtract that something at zero. In the
current paper, the plus distribution is used instead. The integrated thrust is

1

σ0
R2(τ) = exp(−2ᾱ log2 τ − 3ᾱ log τ)

e−2γη

Γ(2η + 1)
(4.6)
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where η = −2ᾱ log τ . This is now “resummed”, in the sense that R′2(τ) = dσ2/dτ → 0 as τ → 0,
whereas the parton expression diverges as τ → 0. This eq. (4.6) looks a little like Abelian exponen-
tiation, or the BDS-like ansatz in supersymmetric Yang-Mills. But it is striking that this is in real
QCD.

Schwartz now reproduces the CTTW result using SCET: hard function, jet function, soft func-
tion. For two jets they are back to back. A near-collinear jet can transfer soft momentum to the soft
QCD background. The intermediate scales µ, µh, µj , µs all cancel, due to three relations between six
anomalous dimensions.

SCET manifests a dynamical seesaw scale q = p2/Q in addition to the center-of-mass energy Q and
the jet mass scale p ∼ Q

√
1− T . We can distinguish p/q from Q/p.

“The breakdown of naive perturbation theory due to the appearance of large logarithms is independent of αs

blowing up and of non-perturbative effects.”. In fact we can turn off running of αs and study this effect.

4.3 Glauber gluons: off-shell reinterpreted as on-shell

(On p.15 they give two views of the hard S-matrix, but the 2nd one seems preferred: SH should
always be thought of as giving the amplitudes for producing hard particles.) Here we can see the
aforementioned universality explicitly: 〈q̄qg|SH |Z〉 factorizes into 〈q̄qg|e−iHast+ |q̄q〉〈q̄q|SH |Z〉, and
the splitting amplitudes 〈q̄qg|e−iHast+ |q̄q〉 are universal — here they cite e.g. Kosower [9].

Glauber gluons are analogous to photon exchange between external electrons/positrons in QED
(that gives rise to the Coulomb phase), e.g. the “Glauber graph” their eq. (110). More specifically,
“Glauber gluons” have transverse momenta pT much larger than their light-cone components p−
and p− and can induce Coulomb-like interactions among soft and collinear particles. This is also
discussed in Cohen’s notes [5].

But their eq. (110) violates the organizational principle in these notes of focusing on dimensional
regularization as opposed to cutoff. Now back up to:

∞. If we break the central region up into a −∞ to 0 region and a 0 to ∞ region, then the
hard vertex can be in only one of the regions. Let us also pretend for now that Has is the
same as H with the exception of the hard vertex. Then, if the hard vertex is at t < 0, the
evolution from e−iHt from 0 to ∞ will be exactly be cancelled by the evolution from t = ∞
to 0 in the asymptotic region. That is

t=−∞ t=∞t=0
+

t=−∞ t=∞t=0
+

t=−∞ t=0 t=∞
= 0 (102)

In equations, the cancellation occurs point-by-point in phase space as

� i

!f − !i + 2i"

i

!f − !c + i"
− i

!c − !i + i"

−i
!c − !f − i"

+ −i
!i − !c − i"

−i
!i − !f − 2i"

�
× i

Q − !i + i"
= 0 (103)

where !i = !1+k + !2−k, !c = !1+k + !2−k + !k and !f = !1 + !2. In the real case, where Has is
not exactly the same as H without the hard vertex, these graphs will not sum to precisely
zero, but to something that is IR finite.

The cancellation of the graphs with the hard vertex at t < 0 implies that the nonzero
contribution of the graph in Eq. (101) comes from the region where the hard vertex is at
t > 0. So we must look at

MG =
t=0 t=∞p1 + k

p2

p1

p2 − k

↓k ∼ � dd−1k(2⇡)d−1 1

2!k

1

2!1+k
1

2!2−k
i

!1+k + !2−k −Q + i"

× −i
!1+k − (!1 + !k) − i"

−i
!1+k + !2−k − (!1 + !2) − 2i"

(104)

Now we only have 3-momentum conservation, not energy conservation. So, �p1 + �p2 = 0 and
thus !1 = !2, but nothing forces !1 = Q

2 . Defining the angle between �k and �p1 as ✓, in the
soft limit !1+k ≅ !1 + !k cos ✓ and !2−k ≅ !2 + !k cos ✓, so performing the power expansion
results in

MG ∼ i

!1 + !2 −Q + i" � dd−1k(2⇡)d−1 1

!3
k

1

cos ✓ − 1 − i"

1

cos ✓ − i"
(105)

∼ i

!1 + !2 −Q + i" � d!k!
d−5
k � 1

✏IR
− i⇡ +�� (106)

31

Exercise 3: assemble this integrand from their TOPT Feynman rules. (Solution in appendix.)

In all, since ~p1 = −~p2, we have ω1 = ω2. This at first looks like it could be a problem, since

ω1+k ∼ ω1 + ωk cos θ , ω2−k ∼ ω2 + ωk cos θ , (4.7)

so the denominator is ω1 + ω2 − Q + iε = 2ω1 − Q + iε. This could become dangerous if ω1 = Q/2,
but we are not demanding that. So this propagator stays finite as the exchanged gluon becomes soft.
The rest gives the Glauber phase.

Now that the smoke has (partially) cleared, we can relate to QED:

〈~pf |S|~pi〉 ∼
α

(~pi − ~pf )2
e
−iα m

|~pi−~pf |
1
ε (4.8)

Expanding the exponential in α, the divergent phase is invisible in the 1st Born approximation but
appears at 2nd order, a secular (late-time) term. Here, there is a finite contribution.

Another observation is we can compare the previous example of electron “DIS” to this Glauber
final-state interaction. I think the difference comes from the asymmetry between initial/final in the
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latter. In electron DIS, the initial and final cancel (with cutoff) or aren’t there (with dim.reg.). Here,
the central region talks to the outgoing region, and only if the hard vertex is at t > 0.

Glauber gluons are also reviewed for example in some GGI lectures [10] where they are related to
“tune A” Tevatron data comparisons using Pythia. This is still going on with Tevatron data [11]. In
practice, phenomenologists use parton distribution functions (PDFs) to model e.g. initial-state gluon
radiation, but the PDFs use DGLAP evolution equations, so it still seems useful to connect to splitting
function discussions.

p.30: “Glauber gluons are normally associated with purely off-shell modes, with entirely transverse mo-
mentum. In time-ordered perturbation theory one has only on-shell modes. So how is the Glauber contribution
going to be reproduced?”. Answer: “To properly evaluate the integral, we must be patient in enforcing the
energy conservation in the central region.”

ImMG ∼
∫
dd−2~k⊥

1

~k2⊥
. (4.9)

In the end, this means that there are additional operators, Glauber operators, generated in the soft
collinear effective theory, when the eikonal approximation cannot be trusted [20].

Wild speculation: if we had one-loop on-shell recursion (Berends-Giele), can it be thought of as
splitting in the Kosower et al sense?

5 N = 4 SYM

At 1-loop, the usual 4-point function has 1/ε2 and 1/ε terms before we get to ε0:

M
(1)
4 (ε) = − 2

ε2
+

1

ε

(
− ln

µ2

−s
− ln

−µ2

−t

)
− ln

µ2

−t
ln
µ2

−s
+ 4ζ2 +O(ε) (5.1)

In the two-loop this makes it complicated (their eq. (141)).
For the hard S-matrix, we instead have the IR-finite one-loop result

M̂
(1)
4 =

1

Z4
M̂

(1)
4,bare = − ln

µ2

−t
ln
µ2

−s
+ 4ζ2 +O(ε) (5.2)

so the only practical difference is that we are allowed to renormalize the S-matrix operator itself by a
Z-factor that appears to depend on s and t, but really only depends on the soft labels. The two-loop
result

M̂
(2)
4 =

1

2
(M̂

(1)
4 − ζ2)2 − ζ4 +

1

2
ζ3

(
ln
µ2

−s
+ ln

µ2

−t

)
(5.3)

This is a lot simpler than the usual thing (their eq. (141)) that mixes orders in the infrared regulator ε.
At 6 points, the usual result depends on e.g. s123, but the hard result only depends on 2-particle

invariants s12, s23, s45. This means that when exponentiated as BDS, the amplitude cannot violate
Steinmann relations. This may not continue, but it does seem nice.

6 Wald

Wald et al [19] are not so happy with the Strominger et al “Faddeev-Kulish-like” approach.
Compare initial data for the black hole merger problem. One way is to start with clumps of scalar

field that are allowed to collapse under gravity.
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A Standard cross section calculation

If the matrix element itself has an overall delta function, it looks like it might get squared, which
is not good. In Peskin & Schroeder Ch.4. they don’t explain this at all they just say the S-matrix
“should” contain an overall delta function and extract it, eq. (4.73):

S = (2π)4δ(4)(
∑

kin −
∑

kout)iM (A.1)

The usual argument is then: Lorentz-invariant phase space (LIPS) is the integration over final-state
momenta pf , ∫

dΠn =

∏
f

∫
d3pf
(2π)3

1

2Ef

 (2π)4δ(4)(
∑

kin −
∑

kout) (A.2)

if the experiment cannot resolve the spread in momentum of the initial wavepackets. For two final-
state particles (p1 = −p2) this is∫

dΠ2 =

∫
dΩ

p21
16π2E1E2

(
p1
E1

+
p1
E2

)−1
=

∫
d(cos θ)

1

16π

2|p1|
Ecm

(A.3)

where the last equality (that is in the center-of-mass frame) only holds if the reaction is symmetric
around the collision axis. At high energy, 2|p1|/Ecm ∼ 1. So LIPS amounts to integrating over
angle between the final back-to-back particles and the original beam. (There is a slight difference in
Schwartz book, he also has a step function of the energy difference before/after.)

To compare with Hannisdottir-Schwartz, their eq. (74) in the Breit or “brick-wall” frame where
the off-shell photon has no energy: qµ = (0, 0, 0, Q).∫

dd−1k

(2π)d−1
=

Ωd−2
(2π)d−1

∫
dωkω

d−2
k

∫
d cos θ(1− cos2 θ)(d−4)/2 (A.4)

Peskin & Schroeder comment that decay rates based on this formalism are a little iffy, since in
taking the infinite-time limit to define the S-matrix, we have effectively assumed that all particles
are stable. But in practice (like in DarkSUSY!), it can be useful to allow intermediate states to have
tiny widths (decay rates), and then remove them. This is like the iε prescription with m2 → m2 − iε
for virtual particles. It is a bigger change of the formalism to allow external particles to have widths,
complexifying s+ iε, then the S-matrix has an imaginary part. This is the topic of [3].

One convenient thing about the usual matrix elements is crossing symmetry. It’s convenient,
but kind of unphysical in the sense that it relates amplitudes for processes that have different LIPS
and therefore possibly different infrared singularities, or relates possible to impossible processes.
For example, one popular convention for momenta is “all ingoing”, but the probability of an all-to-
nothing process actually happening is of course always zero. In fact [3] calls crossing a conjectural
property and write: “the question is whether we can recycle [...] to obtain the answer for the crossed process,
[...] “for free”, i.e., by analytic continuation. Unfortunately, the two S-matrix elements are defined in disjoint
regions of the kinematic space: for s > 0 and s < 0 respectively, so in order to even ponder such a connection,
one is forced to uplift s to a complex variable.”

A perhaps more practical question: is the phase space of a 4-point function something physical, or
should it include the phase space of 5 or more particles, some of which are soft? Peskin & Schroeder
discuss this for QED in section 6.4

If I understand it correctly, one thing that is going on is to introduce a “measurement function”
that makes explicit what we usually keep implicit. You might say, this is exactly like putting an
infrared cutoff ω > ωmin on the photon energy, but I think Njet = 2 is different than that, in particular
it can be implemented in dimensional regularization.
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B TOPT in textbooks

Schwartz in Chapter 4 in his book makes the point that in TOPT, at each vertex, 3-momentum is
conserved (or matrix elements vanish), but energy is not conserved.6 Schwartz then (p.52) refers to
Sterman’s book, which derivates the TOPT rules from Lorentz-invariant rules! This is pretty confus-
ing, actually.

The clear point Schwartz makes is that the TOPT matrix element (transfer matrix) is as

T = Tretarded + Tadvanced =
e2

Ei − E(R)
n

+
e2

Ei − E(A)
n

∝ 1

(∆E)2 − (Eγ)2
(B.1)

where ∆E = E1 − E3 and Eγ = |~pγ | = |~p1 − ~p3|, which can be expressed compactly as

T = 2Eγ
e2

k2
= 2Eγ

e2

(p3 − p1)2
. (B.2)

The 1/kµk
µ becomes the essential cleverness of Feynman diagrams: to represent several (here two)

terms with one term. But this simplicity comes at a price: intermediate particles are now off-shell,
i.e. don’t satisfy their own equations of motion. Indeed, kµ = pµ3 − p

µ
1 is not the 4-momentum of the

actual intermediate photon, since k2 6= 0 for p3 6= p1, or more in detail

Eγ = |~pγ | = |~p1 − ~p3| 6= ∆E = E1 − E3 . (B.3)

That is, the energy Eγ of the on-shell intermediate photon is not the change in energy of the electron
that emitted it. This is of course quite different from Lorentz-invariant perturbation theory, where
both energy and 3-momentum are conserved at each vertex – that’s the point! But then k2 6= 0.

My way to express this situation is that off-shell-ness is a convenient trick that is not necessary. I
used to think off-shell-ness was somehow an intrinsic feature of relativistic quantum mechanics, but
developments in the last decade or so have convinced me it is not.

Note that Hannesdottir-Schwartz do not use standard TOPT as from Sterman: in the hard S-matrix
SH, there’s 3-momentum conservation but no overall energy conservation δ(Ef − Ei) in the central
region. Calculationally this is just how it is, but conceptually actually there is no change, all it means
is that they zoom in on a subprocess, and make use of universality in the rest of the process.

It’s hard to resist quoting the Schwartz quote of Schwinger: Although Schwinger was able to tame
the infinities using OFPT, his techniques were not for everyone. In his own words, "Like the silicon chips of
more recent years, the Feynman diagram was bringing computation to the masses"

In fact, Schwartz already in Ch.4 nicely connects TOPT as a predecessor to the worldline formal-
ism (Ch.33): “Thus, in a loop, each particle has its own proper time, s or t, which denote how long each particle
has taken to get around its part of the loop. Then the Feynman parameter x is how far one particle is behind the
other one. Also he connects the more old-fashioned TOPT to on-shell methods in the modern sense.

C Soft Collinear Effective Theory (SCET)

I follow Cohen [5] and the SCET (“sket”) book/review [12]. It is also discussed in Schwartz’s book,
Ch. 36.5. The photon momentum is k, and the external fermions are ` and p. Pick the lightlike
reference vectors nµ = (1, 0, 0, 1) (direction of p), n̄µ = (1, 0, 0,−1) (direction of `), then pµ = 1

2(n ·
p)n̄µ + 1

2(n̄ · p)nµ + pµ⊥, that gives p2 = (n · p)(n̄ · p) + p2⊥ and p · q = p+ · q− + p− · q+ + p⊥ · q⊥. Now,
the first (n · p) component is called +, the second (n̄ · p) component is called −, and the rest that is
transverse is called ⊥.

We consider p2 ∼ `2 ∼ λ2Q2. (See the comment in the main text about how for jets, λ is viewed
as invariant mass/energy). In for example the hard region, kµ goes as (1, 1, 1)Q (i.e. λ0, so k is big),
but pµ ∼ (λ2, 1, λ)Q, whereas `µ ∼ (1, λ2, λ)Q. Then for example k+ · `− ∼ O(λ2), which is small. But
the combination `+ · p− ∼ O(1)Q2, which is big.

6In the book that this is to be expected from the uncertainty principle. Like Strassler emphasizes on his blog, I find this
a confusing way to express it, but here at least it makes more sense than in Lorentz-invariant perturbation theory.
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D More QCD

These are just some notes from talking to Rikard Enberg, that I’d like to understand at some point.

D.1 DIS in photon frame

Usual DIS drawing: proton frame. Short timescale for parton picture. Can go to photon frame
instead. Of course, this is not possible if the photon is on-shell, but in DIS it’s viewed as important
that it’s off-shell. Then the photon produces a qq̄ pair that hits proton. Then the parton picture not as
useful. Al Mueller, dipole picture, time ∼ 1/x (small-x physics).

D.2 Label formalism

SCET (“sket”) book/review [12] explains "Label formalism" in 4.9. They are continuous "labels" with
large (non-soft) momenta q, eigenvalues of the “label operator” P that acts on the state.

See also Landshoff. See also Soper on DIS lightcone, maybe more there on label formalism.

E On-shell-ness and general relativity

These are just some notes from talking to Ingemar Bengtsson, that I’d like to understand at some
point.

One could argue that off-shell-ness is nothing different from specifying an external field (or in
the presence of Bianchi identities, an external potential). Certainly in Newtonian gravity we can
compute planetary orbits by finding geodesics in the gravitational field of the sun, without asking
about dynamics of the sun.

One issue here is that “Newtonian gravity” is not a well-defined concept by modern standards,
since Newton didn’t get to phrase it in our terms. One possible interpretation is to write an action to
get Newtonian gravity (see e.g. [18]). Then it is not much different from relativity in the sense that
sources should satisfy their own equations of motion. In that sense, Maxwell theory is also of this
kind. One way to quantify this is using Clebsch potentials. A master’s student of Ingemar Bengtsson
wrote a thesis on a related topic [13].

F Schwinger-Keldysh

Hannesdottir-Schwartz fig. 2 is a little like an “in-in” formalism: t = 0 to t = 0. Maybe this is
why Wald says Hannesdottir-Schwartz have no “out” states (with memory). Schwinger had an in-
in (“closed time path”) formalism, as reviewed in many places, e.g. Bryce DeWitt’s book [16]. In
de Sitter space (expanding universe) there are no “out” states with which to write a whole matrix
〈in|S|out〉, but we can talk of expectation value at the “in” time, so 〈in|O|in〉.

Keldysh formalism for nonequilibrium statistical physics has operatorsO(C) associated with con-
tours C instead of a specific time t.

G Solution to Exercise 1: scaleless integrals

The exercise is to show that scaleless integrals vanish. I like Cohen’s review [5]. He says (p.32):
“dim reg generates logarithms of the RG dimensionful scale µ, and, since the argument of a log must be
dimensionless, there must be some other scale around to produce a consistent non-zero result. The absence of
such a scale implies that the integral must return zero.”. I can argue that this is a nontrivial statement by
quoting Fields medalist Alain Connes: “can someone explain this to me?”. Anyway, it’s actually pretty
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simple: first do partial fraction decomposition by introducing a fictive nonzero mass m:

I = µ2ε
∫

dd`

(2π)d
1

`4
= µ2ε

∫
dd`

(2π)d

(
`2

`4(`2 −m2)
− m2

`4(`2 −m2)

)
. (G.1)

We can define the two pieces as separate integrals, with µ temporarily generalized to be different in
the two pieces, and they can now depend on the mass ratio µ2/m2:

IUV = µ2εUV

∫
dd`

(2π)d
`2

`4(`2 −m2)
=

i

16π2

(
1

εUV
+ log

µ̃2UV

m2
+ 1

)
+O(εUV) , (G.2)

where the tilded scale is the MS thing, µ̃2 = 4πe−γµ2. Indeed in D = 4 − 2ε, this integral is log-
arithmically UV divergent (integrand ∼ `3`2/(`4`2) = 1/`), as was the original integral, but here
the apparently subleading modification of the integrand brings in a separation of UV and IR scales.
Then dimensional regularization does capture the logarithm, i.e. IUV is regulated by µUV, as we see
explicitly in eq. (G.2).

Similarly, the IR piece is:

IIR = µ2εIR

∫
dd`

(2π)d
m2

`4(`2 −m2)
=

i

16π2

(
1

εIR
+ log

µ̃2IR
m2

+ 1

)
+O(εIR) . (G.3)

which in D = 4− 2ε is quadratically IR divergent (integrand ∼ `3/`4 ∼ 1/`) regulated by µIR.
Finally, if we restore µUV = µIR, as it was originally, and also εUV = εIR, we get I = IUV− IIR = 0,

as we were to show.

H Solution to Exercise 2: compute vertex correction

We computeMA in QED in dimensional regularization. One would think this is done in standard
textbooks, and it kind of is, but never exactly as you want it! Hannesdottir-Schwartz refer to Manohar
[4], then of course he gives no details. But very similar computations are discussed for example in
the lectures [5] and [12]. Apart from the tree-level kinematic factorM0, we have the scalar version of
the electron-photon triangle

I = iπ−d/2µ4−d
∫
ddk

1

(k2 + iε)((k + `)2 + iε)((k + p)2 + iε)
(H.1)

= iπ−d/2µ4−d
∫
ddk

1

(k2 + iε)(k2 + 2k− · `+ + iε)(k2 + 2k+ · p− + iε)
(H.2)

where I used from the appendix C (about SCET) that

(k + `)2 = k2 + 2(k+ · `− + k− · `+ + k⊥ · `⊥) + `2 ≈ k2 + 2k− · `+ (H.3)

and similarly (k+ p)2 ≈ k2 + 2k+ · p−. The contribution from the hard region coincides with the form
factor with on-shell external legs, that would be for massless electron in QED.

I =
Γ(1 + ε)

2`+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2`+ · p−

)ε
(H.4)

=
Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
− π2

6

)
+O(ε) . (H.5)

where I set Q2 = 2`+ · p−, I think. Compare to the one-mass triangle as used for example by us [17],
Appendix D:

I3(sij) =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

1

ε2
(−2sij)

−1−ε (H.6)
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The shift in the Gamma takes out an 1/ε2. Here the Mandelstam variable sij can be viewed as nondi-
mensionalized:

sij = α′kikj =
kikj
M2

string

. (H.7)

Now to get exactly eq. (3.1) in QED, we need the fermion propagators instead of scalar propaga-
tors. Is this the only difference to Schwartz?

The usual in for example Peskin & Schroeder has two scales, so log · log, not log2 of a single scale.
Here this arises as hard+collinear+collinear+ultrasoft, e.g. [5], eq. (4.49)

log2
µ2

M2
− log2

µ2

P 2
− log2

µ2

P̄ 2
+ log2

µ2M2

P 2P̄ 2
= 2 log

M2

P 2
log

M2

P̄ 2
(H.8)

To me, one important difference is that in Peskin & Schroeder, the scales arise ad hoc from experi-
mental considerations, but here they are intrinsic to regions of the Feynman integral.

I Exercise 3

First we have the three TOPT propagators:

1

2ωk

1

2ω1+k

1

2ω2−k
. (I.1)

Then we have the prescription for asymptotic-region Feynman rules from eq. (2.1) above: consider
a cut that is moved across the diagram. Note the asymptotic region always gets −iε, not +iε. (It’s
pretty clear in eq. (103).)

1. the off-shell photon (in γ∗ → qq̄) has 4-momentum (0, 0, 0, Q), so the hard vertex gives:

i

ω1+k + ω2−k −Q+ iε
(I.2)

since Eout = ω1+k + ω2−k and the energy at the cut is Ecut = Q. We passed one vertex, and it’s in the
central region, so +iε.

2. If we pass the upper gluon-quark vertex, we have a cut across the exchanged gluon:

ω1+k + ω2−k − (ω1 + ωk + ω2−k) = ω1+k − (ω1 + ωk) (I.3)

since Eout = ω1+k + ω2−k and the energy at the cut is Ecut = ω1 + ωk + ω2−k. We passed one vertex,
in the asymptotic region, so that gives −iε, so we have

i

ω1+k − (ω1 + ωk)− iε
. (I.4)

3. Passing the last vertex, the bottom gluon-quark vertex, we have

i

ω1+k + ω2−k − (ω1 + ω2)− 2iε
(I.5)

since Eout = ω1+k + ω2−k and the energy at the cut (i.e. past the exchanged gluon) is Ecut = ω1 + ω2,
and we passed another vertex, so two total, in the asymptotic region, so −2iε.

Comment: it’s easy to think that the result in “3” should be ω1 + ωk + ω2−k − (ω1 + ω2−k) = ωk.
But this misses the rule about Eout: it’s not the states in between, it’s the states at the beginning, that
are still Eout = ω1+k + ω2−k, as in the previous crossing. Only the cut moved, the out states didn’t
change.

This is the same integrand as eq. (101). That integral is in itself actually ill-defined, since it does
not demand that the hard vertex is at t > 0, even though the integral vanishes otherwise. But to
illustrate the rules, it’s good to see that it has the same integrand structure.
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