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1 Physics background

In hadron collider physics, some of the measured data is expressed as parton distribution functions
(PDFs) that tell us percentages like “how much of the proton is gluon at given momentum trans-
fer Q in a hard collision”. PDFs were originally constructed to allow the use of perturbative QCD
(quarks and gluons) in hadron collider physics, where for example a high-energy gluon produces a
collimated jet of hadrons. But in the collider, hadron jets are not infinitely collimated: they have some
width transverse to the overall direction, as in the first fig-
ure on the right. So more recently, PDFs have been refined
to transverse momentum distributions (TMDs) [8]. When pre-
cision is increased, a new nonzero scale p⊥ � Q becomes
visible, so λ = p⊥/Q corrections can be measured. The orig-
inal PDFs then correspond to λ ≈ 0.

collinear (splitting) soft (emission)
<latexit sha1_base64="/k88ct5Q2pAKiPAod9Gw+ruRBqM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbArQT0GvXiMaB6QrGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzDhGP6QDyfucUWOl+/jxrFssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/yUy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwa52Xvoly5q5Sq11kceTiCYzgFDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwB+sqNnA==</latexit>

p�
<latexit sha1_base64="REhXOp41Av8qJwEeHIKBtdg7lXg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0sWy2m3bJ7ibsboQS+iO8eFDEq7/Hm//GbZqDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024Q3c797hNVmsXywUwT6gs8lixkBBsrdaPHbCDS2bBac+tuDrRKvILUoEBrWP0ajGKSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCI8pn1LJRZU+1l+7gydWWWEwljZkgbl6u+JDAutpyKwnQKbiV725uJ/Xj814bWfMZmkhkqyWBSmHJkYzX9HI6YoMXxqCSaK2VsRmWCFibEJVWwI3vLLq6RzUfcu6437Rq15U8RRhhM4hXPw4AqacActaAOBCJ7hFd6cxHlx3p2PRWvJKWaO4Q+czx+kK4/I</latexit>

kµ

<latexit sha1_base64="230lqTGIrxk61058qRCu7JpFx8g=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRbBi2VXinosevFYwdpCdynZdLYNzWZDki2Upf/EiwdFvPpPvPlvTNs9aOuDYR7vzZDJiyRn2njet1NaW9/Y3CpvV3Z29/YP3MOjJ51mikKLpjxVnYho4ExAyzDDoSMVkCTi0I5GdzO/PQalWSoezURCmJCBYDGjxFip57oXwRhoLqe9PJCgbHerXs2bA68SvyBVVKDZc7+CfkqzBIShnGjd9T1pwpwowyiHaSXINEhCR2QAXUsFSUCH+fzyKT6zSh/HqbIlDJ6rvzdykmg9SSI7mRAz1MveTPzP62YmvglzJmRmQNDFQ3HGsUnxLAbcZwqo4RNLCFXM3orpkChCjQ2rYkPwl7+8Sp4ua/5Vrf5QrzZuizjK6ASdonPko2vUQPeoiVqIojF6Rq/ozcmdF+fd+ViMlpxi5xj9gfP5AwTGk+0=</latexit>�~p?

<latexit sha1_base64="ZEZdv/5hiquEuvbr+OxvO8zIfjA=">AAAB+HicbVDLSgMxFM3UV62PVl26CRbBVZmRoi6LblxWsA/oDCWT3mlDM5mQZAp16Je4caGIWz/FnX9j2s5CWw9c7uGce8nNCSVn2rjut1PY2Nza3inulvb2Dw7LlaPjtk5SRaFFE56obkg0cCagZZjh0JUKSBxy6ITju7nfmYDSLBGPZiohiMlQsIhRYqzUr5T9CdBMzvqZL0HZXqm6NXcBvE68nFRRjma/8uUPEprGIAzlROue50oTZEQZRjnMSn6qQRI6JkPoWSpIDDrIFofP8LlVBjhKlC1h8EL9vZGRWOtpHNrJmJiRXvXm4n9eLzXRTZAxIVMDgi4filKOTYLnKeABU0ANn1pCqGL2VkxHRBFqbFYlG4K3+uV10r6seVe1+kO92rjN4yiiU3SGLpCHrlED3aMmaiGKUvSMXtGb8+S8OO/Ox3K04OQ7J+gPnM8fmMGTtg==</latexit>

~p?

Order λ corrections are of two kinds: collinear and soft. Stewart’s talk gives a useful idea to
keep in mind: consider a particle with big energy p0 going in the z direction. If we assume the
particle has very small mass, (p0)2 − (pz)2 ≈ 0, then p0 ≈ pz . So the component p− = p0 + pz in
lightcone coordinates1 is big (orderQ, comparing to the previous paragraph), and the other lightcone
component p+ = p0 − pz is small. Now, if the particle splits into two particles as in the figure, both
of them still have big momentum in the z direction. But now one of them has some momentum ~p⊥
transverse to the original momentum (i.e. in the x and y plane), with magnitude p⊥, and the other
one −~p⊥ in the opposite direction, with the same magnitude. If the original p− was big, we consider
processes where p⊥ is relatively small, and the ratio is our expansion parameter:

λ =
p⊥
p−
� 1 (1.1)

This is the essence of collinear: the “spread” due to p⊥ will be small in the detector, but nonzero. Note
that collinear usually means energetic, not soft.

Also note: before splitting, if we really interpret the original particle as a point particle, “trans-
verse momentum” p⊥ makes no sense before the splitting. However, if we view it as being composed
of a “cloud”, then we could say that it sort of had some p⊥ associated with it even before splitting.
(We don’t have to say that, but I’m saying it can be useful. See also section 7.)

To make the description somewhat more Lorentz-covariant, introduce the lightlike n = (1, 0, 0, 1)
vector along the original energetic particle, and n̄ = (1, 0, 0,−1) in the opposite spatial direction.
Then the big component is p− = n̄ · p, and the small component is p+ = n · p. (Notice that the
“n direction” is obtained by projecting with the opposite n̄. This is a general feature of lightcone
coordinates: n is “perpendicular to itself”, n · n = 0.) The scaling with λ� 1 is then

(p+, p−, ~p⊥) = (n · p, n̄ · p, ~p⊥) ∼ (λ2, 1, λ) (1.2)

where ~p⊥ has two components (x and y). Alternatively, start with a momentum where all components
scale the same way (λ, λ, λ). Then boost in the n direction: that rescales the p+ component by λ and
the p− component by 1/λ, the p⊥ component staying untouched, giving the same result (1.2).

Here I focused on an energetic particle in the z direction. We could do everything above for a
particle in the −z direction2 , with the roles of n and n̄ reversed. Therefore, it scales as (1, λ2, λ). The
two cases are called n-collinear and n̄-collinear.

1Lightcone coordinates just means retarded/advanced time as in electromagnetism. Note that p is “dual” to x, so the
p− is the one with the plus sign.

2If I understand it correctly, this is not the 2nd particle after the splitting, which is still going mostly in the z direction
with a small motion in the xy plane. Instead it must be a separate particle, which can also be ingoing, like the 2nd proton
in the Drell-Yan process, Schwartz Ch. 36.5.1.
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Hard particles, on the other hand, with momentum-squared Q2, is order λ0. The idea of the EFT
is to integrate them out, i.e. not resolve their propagators but treat them as contact interactions.

Soft radiation is easier to state than collinear: energy and momentum are just small, with all
components scaling the same way. In particular, it is (λ2, λ2, λ2). Why λ2? If a particle approximately
along n with momentum p emits soft radiation with momentum k, it has momentum p− k. Now, we
project along n by computing n̄ · (p− k). If soft is as important as collinear, then the correction piece
−n̄ · k should be order λ2, like the small component p+ in the previous discussion. Other projections
n · k and p⊥ · k will be negligible by the above discussion. 3. (This kind of physics argument at first
sight sounds like wishful thinking: “if soft is as important as collinear”...a more specific calculation is in
the next section, and a general formal argument will be discussed in section 3.)

The interpretation of soft radiation is like a “multipole expansion” in position space: something
that is localized but not exactly pointlike can be expanded around something pointlike. (See Schwartz
Ch. 36.)
The distinction between collinear and soft is summarized
in the figure, which is a simplified version of fig.4.1 in the
TMD review [8], but with some (useful!) information re-
moved for your convenience. This is what the figure says in
words: a hard particle has all components of size Q (order
λ0), a soft particle has p+ ∼ p− both small, and the collinear
regions are asymmetric: p+ � p− or p+ � p−.

soft

collinear

hard
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As I emphasized above, the collinear particles are energetic, so the soft and collinear regions (two
blue dots vs. one green dot) don’t overlap. However, they seem to do so, if the dots just go closer
to the origin! The reviews argue that when computing physical cross sections, hard+collinear+soft
captures everything: there is no important contribution from the combined soft-and-collinear region
closer to the origin. This argument seems to rely on gauge invariance, but the examples are mostly
in scalar theory! I think we can see it in the next section.

The radial lines separating soft and collinear are conventional: there is even an RG equation
expressing that physical results should not depend on this separation, the Collins-Soper equation, but
we won’t need that right now, I think.

2 Loop integration

The drawings above can be viewed as tree-level Feynman diagrams. The 1-
loop triangle diagram is the canonical example of where it becomes interest-
ing: what if an energetic particle splits into two and exchanges soft radiation
between them? In the Becher et al SCET review [1] we find: “The goal is to
calculate the [triangle integral] in the limit in which L2 ∼ P 2 � Q2 that is, in
the case in which the external legs carrying momenta l and p have large energies but
small invariant masses.”. (In [1], they call L2 = −p2

1 − iε and P 2 = −p2
2 − iε. I

like to keep notation when I use quotes, so the quote can be found.)

<latexit sha1_base64="WtVVLkveaRULEg9uOn1W52LVtO4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACbo2h</latexit>p1

<latexit sha1_base64="lfjEq2ZVlSJMUvqhpQemAs6Nhh4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD8o2i</latexit>p2

<latexit sha1_base64="TnFXd0WF2keaW9dpfuXYmDfv4Fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdI/75crbtWdg/wlXk4qkKPRL3/2BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWGVAwljbUkjm6s+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsFdo2j</latexit>p3
<latexit sha1_base64="r5STLDVJWAHB5GDY0OT864wpabg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDiJexKUI9BLx4TNA9IljA76SRDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju5nfekKleSQfzSRGP6RDyQecUWOlh1L9olcoumV3DrJKvIwUIUOtV/jq9iOWhCgNE1TrjufGxk+pMpwJnOa7icaYsjEdYsdSSUPUfjo/dUrOrdIng0jZkobM1d8TKQ21noSB7QypGellbyb+53USM7jxUy7jxKBki0WDRBATkdnfpM8VMiMmllCmuL2VsBFVlBmbTt6G4C2/vEqal2XvqlypV4rV2yyOHJzCGZTAg2uowj3UoAEMhvAMr/DmCOfFeXc+Fq1rTjZzAn/gfP4Ac0mNQw==</latexit>

(Q)

<latexit sha1_base64="4dO+dl+Mtar58ds6JIJ/ot8nSuA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpf6KMSgWnPr7hxklXgFqUGB5qD61R9GLJGoLBPUmJ7nxtZPqbacCZxV+onBmLIJHWEvo4pKNH46v3VGzjJlSMJIZ6Usmau/J1IqjZnKIOuU1I7NspeL/3m9xIY3fspVnFhUbLEoTASxEckfJ0OukVkxzQhlmme3EjammjKbxVPJQvCWX14l7Yu6d1W/fLisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c6L86787FoLTnFzDH8gfP5AxBUjkQ=</latexit>

`
<latexit sha1_base64="5bZ6dbVmWhLeKYk0EYuTqlxzvv8=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoMgiGFXgnoMevEYwTwkWcLspJMMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7wpgzbTzv28mtrK6tb+Q3C1vbO7t7xf2Dho4SRbFOIx6pVkg0ciaxbpjh2IoVEhFybIaj26nffEKlWSQfzDjGQJCBZH1GibHS43kHOT+Lu363WPLK3gzuMvEzUoIMtW7xq9OLaCJQGsqJ1m3fi02QEmUY5TgpdBKNMaEjMsC2pZII1EE6O3jinlil5/YjZUsad6b+nkiJ0HosQtspiBnqRW8q/ue1E9O/DlIm48SgpPNF/YS7JnKn37s9ppAaPraEUMXsrS4dEkWosRkVbAj+4svLpHFR9i/LlftKqXqTxZGHIziGU/DhCqpwBzWoAwUBz/AKb45yXpx352PemnOymUP4A+fzB9wEj84=</latexit> �`

+
p1

<latexit sha1_base64="T2vUKVCdudVxhQ2Lc79TBXM9IBg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMgCGE3BPUY9OIxgnlAsoTZSW8yZHZ2nZkVQshPePGgiFd/x5t/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rF8MOME/YgOJA85o8ZK7S4KcZH0Kr1iyS27c5BV4mWkBBnqveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYslTRC7U/m907JmVX6JIyVLWnIXP09MaGR1uMosJ0RNUO97M3E/7xOasJrf8JlkhqUbLEoTAUxMZk9T/pcITNibAllittbCRtSRZmxERVsCN7yy6ukWSl7l+XqfbVUu8niyMMJnMI5eHAFNbiDOjSAgYBneIU359F5cd6dj0VrzslmjuEPnM8fcvqPmA==</latexit>

`+
p
2

The strategy is what we always would like to do when performing integrals but are never sure it
is allowed: Taylor-expand in the integrand.

As with any effective field theory, SCET doesn’t actually let us compute anything we could not
in principle compute in the full (non-effective) theory. But it provides some physical intuition, and
an organizational principle, how to directly compute the important pieces of a calculation in the full
theory. Here, I will use SCET only to inform us how to compute something I didn’t even know to ask
about, then compute it in the full theory.4

3I think in Stewart’s talk, he draws n but means n̄? In Schwartz’s book he gives the multipole expansion eq. (36.77), and
drops the same projections as Stewart does, but that’s because he picked the 2nd proton, with momentum along n̄.

4As usual, Stephan did know to ask about it, but not like this.
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The end result is the Sudakov double logarithm. In Peskin & Schroeder this is explained by a
long physics argument. Here in SCET the double logarithm arises in a much nicer way, as the sum of
hard+collinear+soft regions of integration, e.g. Cohen’s review [3], eq. (4.49), which uses P̄ instead
of L in Becher et al, and M stands for the hard scale Q:

log2 µ2

M2︸ ︷︷ ︸
hard

− log2 µ
2

P 2︸ ︷︷ ︸
P−collinear

− log2 µ
2

P̄ 2︸ ︷︷ ︸
P̄−collinear

+ log2 µ
2M2

P 2P̄ 2︸ ︷︷ ︸
soft

= 2 log
M2

P 2
log

M2

P̄ 2
(2.1)

This becomes big if either ratio M2/P 2 or M2/P̄ 2 is big, or bigger if both are big. (You might say,
couldn’t the ratios also be small? If you do, I failed to explain the physics above: these are infrared
effects, so the scales P 2, P̄ 2 are small scales compared to the measurement scale M2, the higher-
energy scale called Q2 above.5.)

I will not review the reviews here: I think it is pretty well explained both in Cohen and in Becher
et al how to do the integrals in momentum space, which is perhaps the most “physical” way. I do
offer a review of a review of the reviews (yes, 3 times removed from doing actual work!) in section 10
below. Here, I will make a few comments, then review (and attempt to recreate) the same calculation
using limits in Feynman parameters instead of in momentum space.

In [2], the 3-mass scalar triangle is formulated with Symanzik polynomials. In eqs. (5.3a)-(5.3d)
on p.49, we find with u = p2

1/q
2
1 , v = p2

2/q
2
1

Ihard = c3F4(1, 1 + ε, 1 + ε, 1 + ε, u, v) (2.2)
Ip1−collinear = −c3u

−εF4(1, 1− ε, 1− ε, 1 + ε, u, v) (2.3)
Ip2−collinear = −c3v

−εF4(1, 1− ε, 1 + ε, 1− ε, u, v) (2.4)
Isoft = c3csu

−εv−εF4(1, 1− 2ε, 1− ε, 1− ε, u, v) (2.5)

where c3, cs depend on ε and the “overall scaling” q2
1 (the Q2 above) but not on p2

1, p2
2. Here F4

is an Appell function, a hypergeometric function generalized to two variables z and w, with four
parameters (α, β, γ, γ′):

F4(α, β, γ, γ′, z, w) =
∞∑

m,n=0

(α)m+n(β)m+n

(γ)m(γ′)n

zm

m!

wn

n!
, (2.6)

where (α)m is the usual Pochhammer symbol. The main property here of F4 is that it has a finite
radius of convergence:

√
u +
√
v < 1.6 It is fascinating that this is also the physical region of the

3-mass triangle, i.e. as usual, the mathematicians reached the treasure before us physicists!
The result above is originally from 1999 [5] and older, as I review in section 9, but is claimed to be

recreated in [2] using the Lee-Pomeransky representation, derived from the Schwinger representation
for example in Weinzierl’s review [4]. (To compare, recall that if we have xi ∈ [0, 1] we can get
integrals [0,∞] by a variable change to y = x/(1− x).) The paper [2] writes the Feynman parameter
integrand

I = x1x2x3(x1 + x2 + x3 − p2
1x1x3 − p2

2x2x3 − p2
3x1x2)−D/2 (2.7)

and expanding in virtualities p2
i in the integrand. Clearly doing so is dangerous, but fun!

Compared to the usual representation with Feynman parameters, with U andF separately, in Lee-
Pomeransky we only have their sum U+F . We can then think about the limits of the various variables
of integration. (The 1999 paper in the usual Schwinger representation with U and F separately (i.e.
not Lee-Pomeransky), I have mostly recreated, as reviewed in section 9 below.)

5In six dimensions or higher, the scalar triangle is in fact UV divergent by power counting k5dk/k6, but it’s reasonable
to assume without explicitly stating that jet physics takes place in 3+1 dimensions.

6Mathworld gives integral representations for the other three Appell functions F1, F2, F3, but writes “There appears to be
no simple integral representation of this type for the function F4”. I don’t think we need it right now, but it would be interesting
to have it for analytic continuation purposes.

3



The integrands in the various limits are (see loops_and_scet.nb):

Ihard = x1x2x3(x1 + x2 + x3 − p2
3x1x2)−D/2 + . . . (2.8)

Icollinear−1 = x1x2x3(x1 + x3 − p2
1x1x3 − p2

3x1x2)−D/2 + . . . (2.9)
Isoft = x1x2x3(x3 − p2

1x1x3 − p2
2x2x3 − p2

3x1x2)−D/2 + . . . (2.10)

Here there is a clear hierarchy: the Lee-Pomeransky polynomial in the first has all three xi but only
one p3

i , then two xi and two p3
i , then one xi and all three p3

i .
To reproduce the expressions above I need to multiply by some prefactors that are 2p3

3/2,−2p2
3u

2v2

and −4p3
3u

2. (There are also some factors in subleading terms I haven’t checked yet.)
Recall u = p2

1/p
2
3, v = p2

2/p
2
3, then the soft limit is the symmetric limit

|u| ∼ |v| ∼ λ2 � 1 (2.11)

So this is approaching the origin in the u, v parameter space. But as discussed above, there is a choice
how. The collinear is the asymmetric limit

|u| ∼ λ2 � 1 , v fixed (2.12)

and conversely for u↔ v.
The nonanalytic behavior in each case is of the form (p2

i /q
2
1)ε. The scaling with λ is associated to

scaling with u or v or both, as we see above.

2.1 Expanding in virtuality p2
i after integration

It should not be dangerous to expand the final results in p2
i after integration. (Of course, if we stick to

the given restrictions, and they are correct to begin with.)
To connect to simpler things, we can begin by taking one of the virtualities to zero, for example

the second one, p2
2 = 0. We then recover the two-mass triangle as a standard 2F1 hypergeometric

function:
F4(α, β, γ, γ′, u, 0) = 2F1(α, β, γ, u) (2.13)

So this is the leading term for v = 0, and subleading terms in v form the collinear expansion in λ.
It will be interesting to compare the two-mass triangle (2.13) to Weinzierl’s eq. (B.4). That equation

is only valid for p2
1 6= q2

1 , i.e. u 6= 1. In principle that is also true here for the sum representation of 2F1.
However, unlike for the full Appell F4, we do have a standard way to analytically continue 2F1. (As
usual, however, a “standard mathematical way” does not automatically mean it is a good physics
way!)

Similarly, we recover the one-mass triangle by the following identity for u = v = 0:

F4(α, β, γ, γ′, 0, 0) = 1 (2.14)

so the only remaining part is the (noninteger) overall power of p2
1, as is easy to show directly (see e.g.

my notes feynmanlimit.pdf).
My current understanding is that the ln2 in eq. (2.1) above from the SCET reviews are now simply

the expansions in ε of the factors u−ε, and so on.

3 Scaling argument from Newton polytopes

Why do only (λa, λb, λ
a+b
2 ) contribute? In [2], we find an argument in terms of faces of Newton

polytopes, that are the places where the Symanzik polynomials degenerate (maybe Landau varieties).
Then we find the scaling vectors as the normals of these faces. ⇐=

Marcus:[I would like to go through it and add it here.]
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4 Virtualities as integration domain cutoffs

The succession of more complicated special functions (Gamma function, hypergeometric, etc.) often
arise as “truncated integrals” of an integral representation of the simpler function. The standard
example is the incomplete Gamma function

γ(s, x) =

∫ x

0
ts−1e−tdt , γ(s,∞) = Γ(s) . (4.1)

where x is a cutoff of the integration domain of the usual Gamma function. Similarly, our single-
variable 2F1 in the scalar box integral can be written as a incomplete beta function of that variable
(and ε). In fact Mathematica sometimes seems to prefer this language.

The point here is that it is possible to “factor out” Γ(s) from γ(s, x), and we have the following
expansion:

γ(s, x) = Γ(s)xse−x
∞∑

k=0

xk

Γ(s+ k + 1)
. (4.2)

But the incomplete Gamma function is also a confluent hypergeometric function:

γ(s, x) =
xs

s
M(s, s+ 1,−x) . (4.3)

So depending on what we factor out, we can get different-looking expansions. This is discussed in
more detail on the Wikipedia page linked to in the first paragraph of this section.

By the above arguments, I think the role of the cutoff x here could be played by the second
virtuality v. In the figure of the separation of the two collinear regions, if v is small, then u should
not be too small.

Conjecture: using (2.13), we can rewrite the u-collinear integral (2.3) as a v-cutoff integral.

This could help prove some physics-based claims in Hannesdottir-Schwartz.

5 Collinear in terms of Mandelstam variables

In Becher et al section 8.1, they explicitly focus on external masses much smaller than the Mandelstam
variables sij . In some sense this is the “opposite” limit of setting masses to zero and considering sij
small.

6 Linear vs. quadratic propagators

A big difference between QCD and SCET integrals are that some SCET integrals involve propagator
denominators which are linear in the loop momentum, while QCD only involves quadratic denomi-
nators (in covariant gauges). This is easy to see: in for example the collinear region of SCET integrals,
the loop momentum k2 is by definition of this region negligible compared to the collinear cross term
k+`−. This means the usual naive power counting fails, and we have 1/k instead of 1/k2, which is
less IR divergent. (It is more UV divergent, but by the above discussion, we don’t worry!)

Since in old-fashioned time-ordered perturbation theory (TOPT), propagators are also linear, this
seems like it will treat them on a more equal footing.

5

https://en.wikipedia.org/wiki/Incomplete_gamma_function


7 When two particles merge, where does the p⊥ information go?

This connects to the discussion of merging and splitting external lines, as in Altarelli-Parisi splitting.
There we can ask the question: if we merge two external lines, what happened to the transverse
momentum? Two 4-vectors obviously carry more information than a single 4-vector. The answer
is that the “merged particle” only captures part of the original kinematics if treated as an ordinary
particle. SCET is one way to reintroduce corrections systematically, which can also help quantify
when the information we dropped is actually less important. (Another way is multiparticle Berends-
Giele fields, that “remember” not only the sum ki + kj but also the single momentum ki.)

8 Landau singularities

Some people [6] say that Landau assumed approaching the singularity along a codimension one, but
there are many more general cases, especially for higher loops. The ideas go back to [10].

9 Older papers: the “negative dimension method”, D < 0

In [5], they start from the Minkowski space integral

∫
dDk

iπD/2
eαk

2
=

1

αD/2
. (9.1)

(Integration directly in Minkowski space, i.e. without Wick rotation to Euclidean signature, was a
topic in my PhD thesis [7], so naturally I would be happy to discuss this in detail, but just take it as
given for now.)

Now, for αk2 � 1 we could expand the exponential

eαk
2

=
∞∑

n=0

αn(k2)n

n!
. (9.2)

Now a crazy trick. If we want to recreate the Minkowski integral (9.1) with the series expansion (9.2),
we can for integer n define a formal integral that picks out a single term

∫
dDk

iπD/2
(k2)n = n!δn+D/2,0 (9.3)

Since n was a positive integer, this only works if D = −2n is negative and even. Hence “negative
dimension method”.

Also, they need analytic regulators, 1/k2 → 1/(k2)ν for ν close to 1. (They also say that this has
the advantage that you can go to lower-point functions with shrunk propagators by setting ν = 0.
Although that could mess up the momentum routing?)

My current suspicion is that in SCET, there is a desire to stick with Wick rotation so we can
use Euclidean integration. Some things then become more efficient, others perhaps a little more
roundabout.

9.1 Expanding in virtuality p2
i in the integrand for D < 0

With eq. (9.2), we can expand the Symanzik polynomial in p2
i in the “negative dimension method”,

and that is how the Appell F4 function arises, as a sum term by term in umvn. I check this in
loops_and_scet.nb.

I think it would be better to do it in Feynman parameters, as in (2.7) above.
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10 More references

Basic SCET References used above: [1, 3].
Grozin [9] gives a review of the Becher et al review [1]. He has nice use of color: n-collinear is

blue, n̄-collinear is green, soft is pink. Figure 6 and an unnumbered figure capture everything we
need, the soft Feynman rules and the triangle:

For c+ collinear fields kc+
⇠ (�2, 1, �) and @c+

⇠ (�2, 1, �); from k+x� ⇠ 1, k�x+ ⇠ 1,
k?x? ⇠ 1 we find xc+

⇠ (1, ��2, ��1). The correlator of collinear fields is

<T'c+
(x)'c+

(0)> =

Z
ddkc+

(2⇡)d
e�ikc+

·xc+
i

k2
c+

+ i0
⇠ �d�2 ,

and hence
'c+
⇠ �d/2�1 .

Therefore, the Lagrangian is

Lc+
⇠ (@+'c+

)(@�'c+
) ⇠ �d ,

and the action for a characteristic region ⇠ xc+ is

Sc+
=

Z
ddx Lc+

⇠ 1 .

Similar estimates can be made for 'c� .

a b c

Figure 6: Interactions: 3 soft fields (a); 3 c+ collinear fields (b); 2 c+ collinear fields and soft
field (c).

There is interaction of 3 soft fields (Fig. 6a) from the term � g
3!'

3
s in Ls; momentum con-

servation is consistent with power counting: (�2, �2, �2) + (�2, �2, �2) = (�2, �2, �2). There is
interaction of 3 c+ collinear fields (Fig. 6b) from the term � g

3!'
3
c+

in Lc+ ; momentum conser-

vation is consistent: (�2, 1, �) + (�2, 1, �) = (�2, 1, �) (of course, there is also interaction of 3
c� collinear fields). There is also interaction of 2 c+ collinear fields and soft one (Fig. 6c) from
the collinear–soft Lagrangian

Lcs = �g

2
'2

c+
's �

g

2
'2

c�'s (3.10)

momentum conservation is consistent: (�2, 1, �) + (�2, �2, �2) = (�2, 1, �) (of course, there is
also interaction of 2 c� collinear fields and soft one). Other possible interactions ('c+

2'c� ,
'c+

'c�'s, 'c+
2's, . . . ) are not allowed because momentum conservation is not consistent

with power counting.
The action for the collinear–soft interaction is

Scs =
g

2

Z
ddx'2

c+
(x)'s(x) (3.11)

(the c�–soft interaction can be considered similarly). In coordinate space the region where
'c+

(x) lives is x ⇠ (1, ��2, ��1)Q�1. The region where 's(x) lives is x ⇠ (��2, ��2, ��2)Q�1.
The characteristic region of x in the integral (3.11) is therefore collinear (Fig. 7).
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Now we are ready to calculate the form factor with o↵-shell momenta p = (p+, p�,~0),
p0 = (p0+, p0�,~0) in SCET. At 1 loop

p p0
= C̃

(1)
2 + C̃

(0)
3 + C̃

(0)
3 + ,

where C̃
(1)
2 is given by the formula (3.13). The c+ collinear loop diagram (Fig. 10a) is

1

2

g2

(4⇡)d/2

Z
ddk

i⇡d/2

C̃3(k� + p�,�k�, p0+)

(�k2 � i0)(�(k + p)2 � i0)

=
g2

(4⇡)d/2

Z
ddk

i⇡d/2

1

(�k2 � i0)(�(k + p)2 � i0)(�p0+k� � i0)
=

g2

(4⇡)d/2
Ic+

,

where Ic+
is given by the formula (3.7); the c� collinear loop is similar. In the soft loop diagram

(Fig. 10b), p = (p+, p�,~0), p0 = (p0+, p0�,~0), k = (k+, k�, ~k?); momentum conservation holds up
to O(�), and

g2

(4⇡)d/2

Z
ddk

i⇡d/2

1

(�k2 � i0)(�p�(k+ + p+)� i0)(�p0+(k� + p0�)� i0)
=

g2

(4⇡)d/2
Is ,

where Is is given by the formula (3.8). Thus we have reproduced the result of the method of
regions (Sect. 2) within SCET.

p p0

k + p

�k

a

p p0
k

(k+ + p+, p�,~0) (p0+, k� + p0�,~0)

b

Figure 10: c+ collinear (a) and soft (b) loop diagrams in SCET.

4 QCD

4.1 SQET Lagrangian

Now we consider massless QCD

L =  ̄i /D � 1

4
F aµ⌫F a

µ⌫ ,

where igFµ⌫ = [iDµ, iD⌫ ] and flavor indices are assumed. We want to construct an e↵ective
theory with soft (kc ⇠ (�2, 1, �)Q) and collinear (ks ⇠ (�2, �2, �2)Q) modes:

 !  c +  s , Aµ ! Aµ
c + Aµ

s .
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where the C are Wilson coefficients that contain information about the high-energy modes.
This perhaps explains the claim I made above: here, I am not actually using SCET directly, in

the sense of these diagrams. But it would probably be easier to do so, except that I can do the “full
theory” integrals.

If you made it all the way here (or skipped!), obviously you are ready to consult Heisenberg 1943
[10], where he makes the first argument that the S-matrix should only relate observable (beobachtbare)
quantities. Being infrared finite is clearly necessary to be observable, but it is not sufficient! For
example, the Hannesdottir-Schwartz hard S-matrix is infrared finite, but in general complex.
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