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Abstract
The role of entropy in cosmology is reviewed. In particular, it is shown that the entropy in a
comoving volume of the universe is conserved; entropy is used to calculate neutrino background
temperature; some aspects of galaxy formation are elucidated through entropy, and the question
of time in cosmology is addressed. The basic questions arising around entropy in a cosmological
context are discussed, like the flatness problem and the validity of the second law of
thermodynamics in an oscillating universe. The resolution of the flatness problem through
inflation is also considered.
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1 Introduction

1.1 Cosmology

Although the reader might already be familiar with cosmology, the basic concepts which are relevant
to this discussion will be reviewed; even a reader well versed in cosmology might want to browse
this section to see the approach taken here.

A fundamental assumption in the Standard Model of cosmology is the cosmological principle,
that the universe is homogeneous and isotropic on the largest scales. This principle alone, when
analyzed with the tools of differential geometry, implies that there are only three possible models
for the universe. The three models are characterized by a curvature constant k, which can be
scaled to be either —1, 0 or 1.

e The “flat” universe (k = 0) is merely Euclidean space, infinite in extension.
e The “closed” universe (k = 1) is a three-dimensional sphere, with finite volume.
e The “open” universe (k= —1) is a saddle-point at each point, and is infinite.

These three models follow directly from the cosmological principle without resort to general rela-
tivity. But a way to evolve these models of the universe it provided to us by relativity: Einstein’s
equations, or “geometrodynamics” [7].

Einstein’s equations applied to the three models show that the homogeneous and isotropic
universe is simply “blown up” by a scale factor — call it R(t) — as time passes by . This statement
needs two clarifications. Firstly, even in special relativity, we have no concept of absolute time; how
can time be defined globally in a general relativistic model? For now, we will adopt the simplistic
view that at the Big Bang, we synchronize our clocks to t = 0, and the proper time measured
by different observers in different typical galaxies flying out from the Big Bang have no reason to
differ, thus the proper time of any typical galaxy is used as the cosmic standard time, or CST. We
will return to the question of time in section 5. Secondly, how can an infinite universe (the “flat”
and “open” ones) be “blown up”? In the “closed” universe (a sphere) R(t) actually corresponds
to the radius. For the other two, an increasing R(t) can still meaningfully be said to represent an
“expansion”: although the volume of the universe remains infinite, any two typical galaxies will
increase their separation by a distance related to R(t).

It can be proven that the hydrodynamics of a homogeneous, isotropic universe is identical to
that of a perfect fluid: we need only two parameters to describe it completely, pressure p and
energy' density p. Units in which ¢ = 1 are used. The Einstein equations for the perfect fluid
reduce to one dynamical equation for the scale factor R(t):

&G

R* +k=—pR’ (1)

(where G is Newton’s gravitational constant) and an equation of conservation

dp d .
R’ — = —[R® 2
7 = B p+p)l (2)
What is actually conserved in this equation will be discussed later. To close the set for the
unknowns {R,p, p}, we need a thermodynamic equation of state:

p=p(p)

which must be found from statistical mechanics or other independent methods. We see that since
k appears in equation (1), the three models exhibit different dynamics. Notably, the “flat” and
”open” universes expand indefinitely from the Big Bang, while the “closed”” model (k = 1) expands
initially and then contracts back to a “Big Crunch”, possibly oscillating back and forth (indefinitely
expanding and contracting). Since p appears in equation (1), we could find k£ (and thus nail down

1In relativity, matter is of course equivalent to energy: E = m in units with ¢ = 1.
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which one of the three models, if any, we live in) if we knew p and the quantity R/ R=H , known
as the "Hubble constant” at any particular instant, such as right now. The present value of the
Hubble constant H, can be estimated at around 75 km/sec/megaparsec, and so it can be found
that the “flat” universe (k = 0) has a present energy density

3H§
Pec =
&G

~ 1072 g/cm?

called the critical density. If the actual present density pg is greater than this, the universe is
“open”, if it is less, then “closed”. In other words, if there is enough matter (energy), it will
be able to reverse the initial expansion through gravitational attraction. The three models give
slightly different predictions for observables like the age of the universe, but observational data
have so far been unable to rule out any of the three. The data are infuriatingly close to enable
such a decision. Special attention is given to the ratio

=2 (3)
Pc
which has been estimated to be of order 1 from red-shifts, but 0.028 from the mass present in
galaxies. If the former estimate is to be taken seriously, most of the matter of the universe must be
found in intergalactic space, e.g. ionized hydrogen within clusters of galaxies. Such “dark matter”
has not been conclusively found, which has earned this problem its name “the problem of missing
matter”.

1.2 Entropy

The most useful quantities in physics are those which are, in one sense or another, conserved. In
fact, when a new quantity is noted to be experimentally or theoretically conserved, it is often given
a name. Energy, for instance, was found early on to be conserved in simple mechanical systems,
which is why energy is such a useful concept. In general relativity, however, energy is not always
easy to define. Due to the non-linear coupling between energy and the curvature of space-time
through Einstein’s equations, it is often hard to separate energy from space-time itself. In the case
of gravitational waves, for example, we would intuitively say that energy is being transported. But
this energy could then act as a source, and contributes to its own gravitational field, blurring the
distinction.

Why mention this here? To contrast the difficulties in defining energy with the ease of defining
entropy. Entropy depends on internal degrees of freedom and is oblivious to the general-relativistic
world [6].

In the case of the Standard Model, this discussion is largely superfluous; there are no obstacles
to defining neither energy (energy density p) nor entropy S for a perfect fluid:

TdS = dE + pdV = d(pV) + pdV (4)

It can readily be found (appendix A) that the integrability condition for the entropy can be written

as d 1
p —
T = T(p+p)

which will be of use later.

2 The Early Universe

2.1 A Universe of Radiation

A large part of cosmology is devoted to the early universe, meaning the period between around 102
K (t < 1073s) and 10° — 10* K (¢ = 10° years). Before this (the “very early universe”), the strong
force played an important but poorly-understood role, and after this era, particles recombined to



form matter as we know it, signifying the beginning of the matter-dominated era. In the early
universe, “ordinary” matter was nonexistent. The universe consisted of a “soup” of particles,
initially in thermal equilibrium, and highly relativistic. This is called the radiation-dominated era,
and the equation of state in the early universe is taken to be

P=3
which describes a highly relativistic photon gas?. Note that this holds separately for each species of
particles (photons, electrons, ...) but as long as they are all in thermal equilibrium, the parameters
(T, p, p) will be the same for all of them.

The entropy is found from the definition (4). A derivation can be found in appendix A. The
entropy in a volume R3(#) is found to be

3
§=-m/p+p)
Now, using the integrability condition for the entropy, we can rewrite the conservation equation
(see appendix B) as
as
dt
so the entropy in a comoving volume is conserved; the expansion of the relativistic perfect fluid
is adiabatic. Notice that the energy (per comoving volume of matter) is not conserved — the
conservation equation (2) will only yield one conserved quantity. Furthermore, it is clear that
when we study the formation of galaxies, the cosmological principle is not useful; the process in
intrinsically inhomogeneous.
There are more conclusions we can draw from our basic dynamical equations. Substitute the
equation of state in the integrability condition, and we find

0

p o T* (5)

with a constant of proportionality depending on the particle type. Consequently, the equation of
state and the integrability condition imply

in thermal equilibrium.

2.2 The Neutrino Background Temperature

It has been shown how entropy can be defined in the early universe, and we have seen that when
defined in this way it is conserved. Of course, any quantity which is conserved is useful, so entropy
is an important tool in some key calculations for the early universe.

One way the conservation of entropy can be used is to calculate the temperature of different
particle species as they go out of thermal equilibrium with each other. In order to do this, we
need to find the constant of proportionality in equation (5). The energy density can be found from

quantum statistics as follows:
dr [, J 1
= —_— 6 —
P=9%s |, PPt 11
with + for fermions and — for bosons. Here g is the number of spin states. When the particles are
highly relativistic, e = /p? + m? & p. Let us evaluate the integral for neutrinos (g = 1, fermions):

e 1 T
= — 3d = ET)*
P h? /0 PPl 11 T 3003 (kT)

2This was derived in Problem 2-4 in this course.




We can use Stefan Boltzmann’s constant a:

871'5 k4 set ~

T RS T
We will use a instead of a to dispose of the factor 2 included in a due to photon polarization. Thus

7~ se ~
P = lart = N, aT*
8
Since we know that all energy densities will be proportional to T*, we assign an effective number
of species N for each particle species, here the neutrino®. Similar calculations for electrons (g = 2,
fermions) and photons (g = 1, bosons) yield

7 se o~
P =2py = ZaT‘* < N, aT*

py =2aT* = N, aT*
With the total effective number of species Niot, the entropy can be written as

s=Twrn =1 (

T T 3

1 + l) Ntot&T4 = A%aNtot(RT)B (6)
Initially, all particle species are in thermal equilibrium. Then, at around T' = 10! K, neutrinos
decouple from the other particles * As the universe cools down to T = 5 x 10° K, the electron-
positron pairs begin to annihilate [11], and we are left with only photons. The point of this
discussion is that the heat released from the e~ — eT-annihilation will be imparted to the only
particles left in thermal equilibrium, the photons. The neutrinos, being out of thermal equilibrium,
will not absorb the extra heat. We now proceed to calculate the effect this heat has. The effective

number of particles in thermal equilibrium before the e~ — et -annihilation is
T 7 11
Ny efore = n 2=—
bef 1 + 1 + 5

and afterwards only the photons are left:
Natter = 2

The scale factor R(t) did not change appreciably during the annihilation, so, from equation (6) we
know

T, RT, S 1/3 S 1/3 Natror 1/3 9 1/3
EZRT7=(<4a/3>Nbefore> ((4&/3)1\@&@) Z(N> 2(11/2>

From this point on, both temperatures coexisted, and were red-shifted by the same factor due to
the expansion of the universe. We know that the present photon background temperature T, is
around 2.7 K. Thus, finally, there should be a neutrino background temperature of

4 1/3
Ty(] = ( ) Tfy(] = 19K

1

This temperature is so low that it will be very hard to observe. On the good side, the number is not
so high that it should have already been observed, so there is no disagreement with observation.
In any case, this simple calculation shows how the equilibrium conservation of entropy in the early
universe can be exploited.

3Gince there are actually six neutrinos, counting antiparticles, this factor would be counted six times
4This is because the collision rate of the weakly interacting neutrinos drops so low that they begin to behave like
free particles [11].



2.3 The Flatness Problem

The previously calculated entropy also gives rise to several questions. Let us briefly consider the
current-day situation. The equation of state is now

p &~ 0 (matter)

since pressure arises through collision and galaxies (the “particles” of the present-day universe)
seldom collide. Therefore the equation of conservation (2) reduces to

d 3
a(PR )=0

so in the matter-dominated universe, energy conservation holds again. We can assume that most
of the entropy comes from the background radiation, which we know is composed of neutrino and
photon radiation. If there are three neutrino species, then Ny = 2 + 41 X3 = %. From equation
(6)

29a

3

To find a value for S, we need to calculate Ry, the present “size” of the universe. This can be done
from equation (1), if we exclude the flat universe k = 0 for a moment. Thus, with the previously
defined 2 and H the present size of the universe is (recall that the index ”0” refers to the present)

Ry = L ~4.1x%x10"m
H3( Q- 1)

For |2 — 1| < 1, Hy = 75km/s/Mpc, @ = 1.0 x 10'° J/m3 /K* we find a dimensionless entropy

S = R} (T3 +T3)

S
e 4 x 1087 (7)

o=
Recall that the entropy per comoving volume S is constant throughout the history of the universe
in the Standard Model. The question arises: why is this pure number so enormous? While nothing
tells us it should not be enormous, most physicists feel uneasy about the appearance of unexplained
enormous numbers.

To convince ourselves that this is not just a large number “because the universe is so big”, the
entropy per baryon can be estimated instead. The number of baryons n; (essentially nucleons) in
the universe is around 107°-108, so

Z 108

Ny
which is still huge. We will restrict our discussion to the previous number o so we will not have to
bother about ny.

Several ideas have been suggested for dealing with this problem. The most obvious is to regard
the entropy o to be part of the initial conditions of the universe, i.e. to regard it as a fundamental
constant. More interesting proposals include considering departures from the perfect fluid model,
including a bulk viscosity which dissipates heat and increases entropy. However, dissipative models
have not yielded entropy large enough to account for (7). Another idea is due to Klein and Alfvén
[4]. They considered cosmologies inspired by plasma physics, in which the mean baryon number
density vanishes. This would make o /n; infinite but meaningless (what is the entropy per particle
if there are no particles?), in effect solving our problem. However, this idea also seems flawed
since a vanishing baryon number density means we there must be numerous galaxies of antimatter,
which have so far eluded observation.

Interestingly, this problem can be restated in terms of 2. When estimating o, we assumed that
Q is between 0 and 2, which appears to be commensurable with the bounds from observations (see
comment after equation (3)). However, since |2 — 1| appears in the denominator of Rg, an ) very
close to 1 is equivalent to a very large entropy o. Therefore, the problem of enormous entropy



can be stated as the question why the actual mass (energy) density appears to be very close to
the critical density. That is, out of all velocities the universe could have begun with, why did it
start expanding at a rate so close to the critical that it is still not clear whether it will contract,
millions of years later? Since a universe in which p = p. has k = 0 (flat), this is called the ”flatness
problem”. A modern, but nevertheless relatively well established, extension of the standard model
approach to the early universe solves the flatness problem and is called the “inflationary model”.

3 Inflation

The flatness problem is not an inconsistency, an error, of the Standard Model. That is, if we pick a
suitable €2, the universe will evolve in a sensible way which agrees with observations. The problem
is that we need to pick a very special value, Q =~ 1, for the model to work this way; it needs
fine-tuning to work. Theories which need fine-tuning are often thought to be approximations of
some deeper theory which explains just why the parameter should be that way. One such deeper
theory is the inflationary universe; it changes the initial behavior of the universe, but turns into
the Standard Model after having done its job.

There are several other problems with the Standard Model, notably the “horizon” problem
(why are regions which are so far apart that light cannot have traveled between them still of the
same temperature?) and the “density fluctuation” problem (if the universe is so uniform, where
does all the structure come from?). However, since these issues have less to do with entropy, let
us concentrate on the flatness problem, but let it be said that the flatness problem is not the sole
motivation for an inflationary model.

3.1 A Brief Overview of Inflation

Inflation has been a lively area of research since the 1981 article by Guth [2] in which the original
model was proposed. Precursors to the inflationary model were considered as early as 1965 [3].
There are now many different inflationary models, since the first attempts were found to have
serious flaws, among others the inability to turn over the stage to the Standard Model at an
appropriate time (the “graceful exit” problem). Here, only the original model will be considered
(it is, after all, the basis of the more recent ones), since the more modern approaches would take
us too far afield from our main issue: entropy.

The inflationary universe focuses on the energy of the vacuum. Particle theory suggests that a
vacuum has an energy density through a Higgs effective field potential V(¢). This potential works
like an extra term in Einstein’s equations, a negative pressure, just like the cosmological constant®.
For each temperature T' there will be a different potential. For small T, like in the present universe,
the potential V(¢) must have a stable (global) minimum which is very close to zero, since any
large value would have a noticeable present-day effect contradicting the observational support of
Einstein’s (unmodified) equations. So this makes a transition to the Standard Model at later times
possible; the goal is, of course, that the two behave similarly at later times.

For the early universe, on the other hand, the inflationary model explores the possibility of an
earlier (metastable) local minimum in the potential V(¢). It is thought that all forces of nature
were one unified force at high energies. As the temperature drops, eventually the forces “freeze
out” one by one, breaking the symmetry between forces at some critical temperature T'=T,. In
the inflationary model, the universe would supercool, going below the critical temperature into the
metastable state, a “false” vacuum. Please consult the attached sketch (after references).

The energy density associated with the false vacuum is, according to grand unified theories [1],

ps =10 g/cm?

5The cosmological constant A was introduced by Einstein in order to prevent the universe from collapsing. He
later withdrew the constant since observations suggested that the universe is expanding from an initial explosion,
making A redundant.



This energy density is incredibly large. It overwhelms the gravitational effect of the ordinary
energy density during the inflationary phase. Einstein’s equation (1) reads

i\ 2
E _ 8nG
R = —3 Pf

where we have neglected & and p in favor of py. The solution of this equation is, by inspection,
R(t) o eX*

where

881G 1/2
X = (ﬂTpf) ~ 1034 S_l

Thus, the huge false vacuum energy density causes the universe to expand very quickly. After
some time At, the universe undergoes a phase transition and the energy is released to reheat the
universe back to almost the critical temperature, just like when supercooled water finally freezes.
Here the inflationary universe joins the Standard Model.

3.2 How Inflation Helps

We return to the flatness problem: why is the entropy so large? Since the temperature after
reheating is just below the critical temperature, the entropy densities s = S/R* will have to be
approximately the same:

Safter A Shefore

But the universe expanded a factor [2]
Z = XAt 3 upto 101"
during the inflationary period At. Thus the scale factors are related by Z:
Raster R Z Rpefore

meaning

3
Safter ~Z Sbefore

So an inconspicuous initial entropy of unity would blow up to a huge entropy, probably even
Satter > 10%7. Going back to our original equation, we see that this is equivalent to an € which
is very close to one (but not necessarily exactly one). Thus, the inflationary universe solves the
flatness problem and explains our high entropy without fine-tuning,.

It can easily be seen why the inflationary universe solves the aforementioned “horizon” problem
as well; distant regions can have the same temperature since a small region with no appreciable
inhomogeneity would be blown up to encompass the entire universe.

4 Galaxy Formation

We now enter the matter dominated era. To describe the formation of observed structure, such
as galaxies, voids, and so on, a more detailed description than the large-scale uniform universe of
the Standard Model. The reason why galaxies formed at all is believed to be due to fluctuations
in the universe which led some regions to be denser than others, and once this happened, matter
would clump together under the increased (small-scale) gravitational attraction. Again, inflation
could provide an explanation why these microscopic fluctuations grew to galactic proportions.



4.1 Entropy and Kinetic Theory

The kinetic theory of gases offers a solid foundation to stand on when reaching out into the
comparatively new kinetic theory of galaxies. However, there are also fundamental differences
between the two. Collisions in a gas are typically short range, frequent and uncorrelated (“memory
destroying”). Gravitational collisions are often very long range, quite infrequent and correlated
(“long memory”). Indeed, it can be shown [8] that long-range collisions are never complete! That
is, in the time it takes for a galaxy to go through a slow, gentle collision with a distant object, it
will have encountered a new object and begun another collision. Quantitatively, we can use the
Langevin equation with a stochastic force . But instead of a delta-function correlation (unrelated
at different times), typical for gases, the correlation will have the shape of

< Bt/ tm)BE [tm) > x e~ 1t=t"/tm

where t,, is the timescale for memory decay.

A description this detailed, however, will be of limited use for clustering of galaxies, due to the
millions of constituents involved. A distribution function for N particles ™) in 6 N-dimensional
phase space will be useful instead. Through it we will attempt to define entropy. A first try might
be

S(N) _ _/fuv) I F gy @ (8)

Because f) contains all information about the system, this entropy is constant. In the early
universe, that was useful, but here it seems we are back to the kinetic description: every particle
is kept track of. There are at least two ways of improving the model: coarse graining and n-body
correlations.

Coarse graining involves replacing the distribution function f(¥) by an average over a certain
volume element AV of phase space. The coarse grained entropy defined through this process will
increase in time. Unfortunately, the behavior of this entropy will depend very much on the specific
coarse graining used (i.e. how fine AV is) and is therefore of limited use to us.

The other way is to integrate out 6(N — n) coordinates to obtain a reduced distribution f(™).
The different ways of reducing the N-body distribution lead naturally to the concept of n-body
correlation functions g. For example, for the 2-body distribution®

FA(1,2) = D) FP2) +g(1,2)

Clearly, we can obtain many different entropies from this, utilizing (8) with different f(™. It can
be proven [8] that

S?)(1,2) < SN (1) + 80 (2)

Therefore, correlations always decrease the n-particle entropy. Intuitively, a correlated system
is less disordered. But let us take a concrete example in which we calculate the gravitational
contribution to entropy.

4.2 The Gravitational Entropy of an Imperfect Gas

An imperfect gas is one in which we consider lowest-order deviations from the perfect (dilute)
gas with no interactions. In an ordinary gas, the interparticle forces are repulsive’, but in a
gravitational system these forces are, of course, attractive. If we call the potential ¢(r) and the
correlation £(r,T), the internal energy is (with the first virial term):

U—3Nk T N? Oo(ﬁ(*)f' T)4mwr?dr
= 5 Nks v J, r)E(r,T) dmr dr

6This was done in class.
7See Problem 2-7



or, with ¢(r) = Gm?/r, and (3/2)Nkpg T =: U,

v=0,- 2 pm)

where

27 5 [ .
T)=—Gm~’ ~&(r, T)d 0
f0) =G [ renar >

It makes sense that the gravitational contribution to energy is negative. To be useful, the correla-
tion ¢ must vanish outside some range [ro,71]. It should also be invariant under scale changes, so
the r-dependence is some power y of 7:

_ [ a(T)r= rinfre,r1]
¢ T) = { 0 otherwise

Since we multiply by 7 and integrate, the case v = 2 will be special in that it yields a logarithmic
dependence of ry/r; =: h. To obtain the entropy, we utilize

OF

2(1/T)

V,N
and expand f(T) in powers of 3 = 1/T:

o0

fB) = cp’

i=0

There can be no negative powers of 3 since the correlation must vanish at infinity. Now we can
just integrate and differentiate according to (9). The entropy is

2rGm?N? Cit
S=8 - ———gnY ——p"

\%4 pa 141
where
r27Y(1=h27)
. rp U=ht ) 9
g(y) = 2=y v
In(1/h) y=2

There are two interesting things about this entropy. Firstly, the gravitational contribution to
the entropy is negative. This makes sense: intuitively, we expect a system which we know tends
towards clumping to decrease its disorder. This does not mean the second law is invalid; there are
many other contributions to the total entropy of the universe. For example, a system in which
the constituent bodies spiral inwards towards each other will, according to general relativity, emit
substantial amounts of gravitational radiation, thus increasing the entropy of the universe. The
dynamics of such a system are, of course, much too complex to discuss here (e.g. the binary pulsar
studied by Hulse and Taylor, Nobel Prize winners of 1993).

The other intriguing fact is that the value v = 2 extremizes the gravitational entropy, there-
fore galaxy clustering evolves towards this value. This claim is supported by numerical N-body
simulations [8]. However, due to the fact that the extremum towards which the system evolves is
a minimum, we are led to infer that there is no stationary equilibrium for gravitational clustering;
this coincides with the well-known idea that gravitating systems are inherently unstable. Galactic
distributions show ever-increasing graininess, and other processes than clustering, e.g. supernovas,
will have to break the collapse and occasionally spit out new material for another clustering cycle
to begin. Our sun, for example, is believed to be a second- or third-generation star [5], formed
from debris flung out from a primeval supernova.

We have now seen that entropy plays a leading role in recent chapters in the history of the
universe, just as it did in the beginning. Now it is only left to speculate about the future.

10



5 The Arrow of Time

5.1 The Entropic Clock

Due to the complex and and very general issues touched upon in this section, the discussion will
have to be qualitative. The main topic is time. The time we have used so far is the cosmic
standard time or CST. This time, the proper time measured by a typical galaxy, is of course
always increasing. In models slightly more sophisticated than the Standard Model, it might not be
possible to define a CST. One common replacement for the Standard Model of the early universe
is the anisotropic Kasner model [10]. The Kasner universe expands at different rates in different
directions, and therefore observers in typical galaxies moving in different directions can disagree
on the amount of time which has passed since the Big Bang.

A more general definition than CST is achieved if one finds a cosmic scalar quantity ¢ which
is known to increase monotonically, and one lets the time be any definite increasing function ¢(Q)
of the chosen quantity. [11] This way, the evolving universe itself acts as a clock.

An obvious choice for the quantity @ is the entropy S. This is not the entropy per comoving
volume now, but the total entropy, and if we believe the second law of thermodynamics, the total
entropy of the universe is always increasing®. Therefore, we could use the direction of increase of
entropy as the definition of the direction of time. (Interestingly, this point of view makes the second
law almost trivial [5]). Again, we see how the concept of entropy can be used in a constructive
way.

It has often been pointed out that living beings create entropy [5]. Whenever we store a fact
in our brains, we convert stored energy into heat, radiating more entropy than we destroyed.
Therefore, our lives seem to be naturally evolving in the direction of increase of entropy, again
making the second law seem obsolete. Finally, in the far future of the universe when the total
entropy has almost reached a maximum, there can be no life to see it, since we destroy order
and there is no order left to destroy. Vividly, this state is sometimes called the heat death of the
universe.

5.2 An Oscillating Universe

Returning to the Standard Model, we see that the “closed” universe could oscillate eternally be-
tween expanding and contracting phases. (Of course, more general models could also be oscillating,.)
This naturally gives rise to the issue of what happens with the second law if there is a contracting
phase of the evolution of the universe. If entropy starts to decrease, we might experience time
running backwards! Fortunately, most reasonable cosmological models suggest that entropy will
continue to increase [5]. Also, in the contracting phase the universe will most likely be so near
heat death that no life could exist.

Another question about the oscillating universe and entropy is whether entropy increases as the
universe passes from Big Bang to Big Crunch to the next cycle. If so, we might be able to observe
“left-over” entropy from previous cycles. However, such ideas “remain at the furthest bounds of
cosmological speculation” [11]. So little is known about the Big Bang itself that it is well nigh
impossible to say anything about the crossing over between cycles; since most laws of physics break
down at the singularity, the second law might well cease to hold, and the universe can start all
over again from any initial value for the entropy.

6 Conclusion

We have seen the versatility of the concept of entropy. It enables us to carry out calculations of
neutrino background temperature, and predict the behavior of galaxy formation. It can even serve
as a clock for the universe. At the same time, it stimulates questions: the flatness problem led to
the inflationary universe, a thriving scientific theory. The question of a possible entropy decrease

8 A realistic model of the universe would probably not expand adiabatically, but could have have mechanisms
which create a slight increase in entropy, like bulk viscosity.
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in a contracting universe led to much research. And the research about the entropy of black holes,
while still not universally accepted as a “real” entropy, continues a legacy which Clausius could
hardly have anticipated the extent of when he defined entropy in terms of heat machines in the

1800s.
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A Entropy

From the entropy differential we identify:

as 1 .
huadl = 10
V|, T(p+p) (10)
os|  _ Vip
or|,  TdT
Therefore:

928 1 1, dp  dp

orov ~ P+ TGt ar)

9*’S  1dp

ovoT —  TdT

The equality of mixed partials (integrability condition of the entropy) requires

1dp ldp ldp

(p+”) Tar T Tar — Tar
or d
p
o7 T(p+p) (11)

So provided this holds, we can easily integrate equation (10) to find

s=Ywrn=L0+n (12)

in a comoving volume R3.

B Conservation of Entropy
Using the expression for entropy, the conservation equation (2) can be written:

2dT dp _dT d

dt dT ~ dt dT(S )

or, if we compare the integrability condition (11) to the equation for entropy (12):

dr s dr [dSs
3¢l o _al
Cdt R® dt (dTT+S>
or, finally,
ds
bt
dt

so the entropy in a comoving volume in conserved.
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