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String Phenomenology, Part 3, v1.1
Marcus Berg

Welcome to the end of the PhD course! I hope you had some fun. Here is a summary of my last lecture,
and an attempt to connect it with what you did in the problems. I am sure I will think of improvements
to this, so for those of you who might be interested, when I have time next (probably in a few weeks) I’ll
post a final version and send out an email.

1 The impact of KKLT

In terms of citations, KKLT [1] is the biggest splash in string theory in the last 5 years1. One should
be very skeptical of attempts to link citation status with actual importance, but to you as a graduate
student, this means you should probably be aware of KKLT. Whether you choose to work on it in the
future is hopefully a matter of whether you perceive it is actually important rather than its citation
status.

2 GKP: “KKLT v0.9”

Most papers are not ideas that came out of nowhere but have a long and often complicated prehis-
tory. Many of the important things in KKLT were already explicitly stated in the beautiful paper [2]
by Giddings, Kachru and Polchinski from 2001 (when I was finishing graduate school). They studied
compactification of Type IIB string theory to four dimensions on warped Calabi-Yau manifolds with
background 3-form and 5-form fluxes (see Polchinski Ch. 12.1 for notation):

ds2
10 = e2A(y)ηµνdx

µdxν + e−2A(y)g̃mndy
mdyn (1)

G3 = F3 − SH3 6= 0 with ?6 G3 = iG3 (2)
F̃5 6= 0 (3)

where g̃mn is the 6d Calabi-Yau metric. Noone knows an analytical expression for g̃mn, only topological
information such as the number of independent complex structure and Kähler moduli (metric deforma-
tions), though some numerical information about this kind of metrics has recently been extracted in
simple cases, like [3]. As discussed before, tadpole cancellation is a crucial constraint on any orientifold
model, for example for the D3-brane tadpole constraint: 2

ND3 +Nflux −
1
4
NO3 = 0 . (4)

because the O3-plane charge is −1/4 that of a D3-brane. 3 This compactification leads to an N = 1,
D = 4 supergravity coupled to a set of moduli scalars S, Ti, Uα: the complexified dilaton S, the complex
structure moduli Uα (cf. our discussion of complex structure U in the torus case), and the Kähler moduli

1As of June 2008: typing FIND TOPCITE 1000+ AND DATE AFTER 2002 into SPIRES gives only one string theory
paper, KKLT.

2Here is a note for those of you who already know some supergravity: We have discussed tadpole conditions from
string theory. You can also think of the D3-brane tadpole condition as the Bianchi identity/equation of motion for the
associated flux, i.e. F̃5, integrated over the internal manifold, as in GKP eq. (2.24). The 3-form fluxes give effective D3-brane
charge that contributes to this equation because of the 10d Chern-Simons term

R
C4 ∧ F3 ∧ H3. We then find explicitly

Nflux = 1/((2π)4α′2)
R
H3 ∧ F3, and as explained in Polchinski Ch. 13.2, the fluxes are quantized such that this expression

is always integer.
3In general it is −2k−5 for a standard O-plane with k spatial dimenions, see Polchinski Vol II p.143, and here k = 3. (I

say “standard” because there are also “exotic” O-planes, see [4] p. 39.)
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Ti (cf. our discussion of the torus area). The K and W functions are (see eq. (23) below)

KGKP = Ktree = −2 lnV (V is volume, a function of Ti) (5)

WGKP,start =
∫
G3 ∧ Ω (G3 depends on S, and Ω depends on Uα) (6)

where Ω is the holomorphic 3-form of the Calabi-Yau manifold (see Maxim’s lectures!) for some given
complexified 3-form flux G3. Don’t worry right now if you don’t understand (6), it will not be our main
focus here. It should be clearly stated that there are many caveats here, one of which is how these
equations are affected by warping (a few recent papers with references to earlier work are [5], [6]). In
KKLT, warping is an important part of the construction so we do need to worry about this, but it is
at least possible that in the “LVS” setup I discuss later, warping may be relatively unimportant. The
N = 1, D = 4 supergravity scalar potential is (Polchinski (B.2.29))

V = eK(K J̄IDJ̄W̄DIW − 3|W |2) I = (S,Uα, Ti) = 1, . . . , total number of moduli (7)

where the Kähler covariant derivative DIW with respect to a generic modulus scalar φI is

DIW = ∂IW +KIW (8)

and indices on the Kähler potential K mean derivatives, e.g. KI = ∂IK and K J̄I = (∂I∂J̄K)−1. When
you plug (5) into this scalar potential V , you stabilize the S and Uα moduli, meaning the potential V
has a minimum at some values of S and Uα, so those moduli will settle down there. We can then plug
these values of S and Uα into (6) and write an effective theory for only the Kähler moduli Ti: 4

KGKP = Ktree = −2 lnV (V is a function of the real part of Ti) (9)
WGKP = W0 (10)

for a constant W0. Now, it turns out we will not stabilize the T moduli this way. This is because the
tree-level Kähler potential (9) happens to satisfy

K ījKiKj̄ = 3 (i runs over Kähler moduli Ti only) (11)

so the term with DTi
W cancels the −3|W |2 in (7) (can you see this?). In other words, (9) and (10) give

a four-dimensional model in which Ti are not stabilized, so no particular scale is generated. In appendix
C.1 and C.2 of [7], we spent a few pages giving a detailed derivation of this fairly well-known statement.

These supergravity models were discovered by Cremmer et al in 1983 [8], and it was considered
interesting that they can have zero cosmological constant V0 = 0 (V0 is the value of V at the minimum)
even after spontaneous supersymmetry breaking. 5 However, after supersymmetry breaking there is no
symmetry preventing loop corrections or string corrections from generating a large cosmological constant,
so this property seems more of a curiosity rather than a solution of the cosmological constant problem.
As Weinberg says in his book, [p.355] “there is no known principle that would require [no-scale]”.

There was no known principle. One of GKP’s contributions was to emphasize (section 2.2.4) that for
orientifold models, tadpole cancellation plus supersymmetry enforces no-scale, so no-scale is more than
a curious coincidence: it is generic at supergravity tree-level in supersymmetric orientifolds. However,
they phrased it more as a problem than a virtue; no-scale by definition means we cannot stabilize Ti
at supergravity tree-level. For moduli stabilization, this is bad news: if you thought you could do
phenomenology in partially stabilized models, see the cautionary tale on p.4. The good news is that (as
GKP also emphasized) the no-scale structure would be broken by every possible correction:

4This “two-step stabilization” is not obviously consistent here, because when we later stabilize T , that might ”un-
stabilize” S and U . In the cases we’ll look at later, it will be consistent.

5For the experts, the way to see that you don’t generate a cosmological constant when you have a constant superpotential
W0 is that the F -terms FT 6= 0 due to the ∂TK term in DTW , but this cancels in V . If we still keep FU = FS = 0, we
don’t generate a cosmological constant, but supersymmetry is broken by FT ∝ DTW 6= 0.
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a1) nonperturbative gauge theory effects on D-branes

a2) nonperturbative effects in gs (D-brane instantons)

b1) perturbative string α′ corrections

b2) perturbative string gs corrections

so the recipe to stabilize Ti would be to consider one of these effects. (Of course, generating a potential
for Ti is not enough; one has to find a minimum, and show the minimum is at reasonably large volume
to neglect α′ corrections.) Let’s call this the “GKP list”, though noone calls it that. What KKLT did
was to consider case a) (not really specifying whether a1 or a2). We will come to cases b1) and b2) later.

3 Stabilizing Kähler moduli

So, one of the two things in KKLT was to add to (9) and (10) a nonperturbative superpotential, as per
option a1) and a2) in the GKP list:

KKKLT = Ktree = −2 lnV (12)

WKKLT = W0 +Wnp where Wnp =
∑
i

Aie
−aiTi (13)

and the sum runs over cycles for which such a Wnp is generated by these nonperturbative effects. There
are examples both where all cycles get a Wnp (i in the sum above runs from 1 to the number of Kähler
moduli) and ones where only some get a Wnp (the i sum is restricted). On the good side, this means
that at least we have some examples where we achieved our goal, which was to stabilize all moduli. But
it also means we have to check on a case by case basis whether we stabilize all of them this way.

The other of the two main things in the KKLT paper was supersymmetry breaking.

3.1 Supersymmetry breaking by “uplift”, and problems

“Uplift” means we initially stabilize in a supersymmetric AdS vacuum (negative cosmological constant
V0 = ΛAdS < 0 in our external four dimensions), then add something that breaks supersymmetry, like anti-
D3-branes, or non-anti-selfdual D7-brane flux, to “lift up” the vacuum energy to zero V0 = 0 (Minkowski)
or positive V0 = ΛdS > 0 (de Sitter). In these notes I will focus on zero cosmological constant. 6

Either way, it is quite problematic to uplift the way it was envisaged in KKLT. For a more recent
approach, see [9] and references therein. The statement in the next section is that the “uplift mechanism”
is not supposed to affect the calculations much, and that most of the physics comes from the supersym-
metric theory. This is a very strong statement, and to a purist it sounds like saying that my Mac Pro
will be totally OK if the entire AlbaNova building collapses. If the statement turns out to be false, then
we need to retreat to something more along the lines of [9]. But thus far, there have been quite a few
surprises, so we should not guess too much and calculate instead.

To summarize, although the consistency of the supersymmetry breaking approach in the KKLT paper
itself was at best unclear, KKLT did start a wave of considering metastable nonsupersymmetric solutions,
some of which appear to be more consistent. In fact, they inspired searching for metastable supersymme-
try breaking minima in non-gravitational gauge theories used in particle physics, as in ISS [10]7, which
is quite an interesting development in itself.

6Comment: even though positive Λ can appear to be the entire point of KKLT (the title of the paper is ”de Sitter vacua
in string theory”), the goal of stabilizing all moduli is independent of the physical motivation of studying de Sitter. In fact,
in KKLT the absolute value of the original ΛAdS is much, much bigger than the observed amount of dark energy, so when
we uplift to positive Λ, we have to go just a tiny, tiny bit above zero if we want to model the observed dark energy, so the
value is put in by hand. This means that if the goal is to use the KKLT recipe to stabilize all moduli, we can equally well
consider uplifting to Minkowski space, which simplifies a few things (see sec. 5)

7Curiously, this paper does not cite KKLT, although some of the authors have informally indicated some inspiration
from KKLT.
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3.2 A cautionary tale

We could take W from (6) above and perform the intermediate-stage calculation

Lsoft = . . . (intermediate) (14)

and do MSSM-style phenomenology with this. But when we add Wnp to stabilize T , supersymmetry is
actually preserved in the AdS minimum. This means that after stabilization the result is changed to

Lsoft = 0 ! (final) (15)

All supersymmetry breaking then comes from the “uplift”, which does not depend on details of (14).
So in this example, our “partially stabilized” phenomenology of Lsoft gives very little information about
physics after complete stabilization, which is all we care about for phenomenology. The lesson learned is
that “partial stabilization” can be very misleading.

3.3 KKLT didn’t invent Wnp

The possibility in principle of considering nonperturbative superpotentials to stabilize Kähler moduli as
was obvious to many people before KKLT (it’s in the “GKP list” for example), but the possibility of
getting metastable vacua with extremely long lifetime was less obvious. The other possibilities b1) and
b2) were only afforded a comment in KKLT, but various extensions of KKLT has explored them, as in
the LVS variant we turn to now.

4 LVS: “KKLT v1.1”

In the same way, the idea of considering perturbative corrections to the Kähler potential as in b1) on the
“GKP list” in principle was obvious to most people, but the effect of doing so was not obvious, and in
fact is still somewhat mysterious. It was discovered in [11] that if we include the α′ correction calculated
in [12] to the Kähler potential,

∆Kα′ = −ξS
3/2
1

V
ξ = −ζ(3)χ/2(2π)3 (16)

where S1 = ReS and χ is the Euler number of the compactification manifold, there seem to exist new
nonsupersymmetric AdS minima at very large volume. This is counterintuitive because typically if you
try to balance a tree-level term against an α′ correction, you can only stabilize at the string scale. This
is an important objection, so let me give some more detail. Let’s say one 4-cycle volume controls the
overall scale of the compactification manifold, and that this is real part of one of the Kähler moduli
τ = ReT . The experience with ”Kähler stabilized” models where you stabilize by adding something
like (16) is that τ ends up of order `4s , that is, order one in string units (`s := 1), i.e. very small rather
than very large. If so, we have a challenge: by dimensional analysis we might expect α′ corrections to
be suppressed as (α′/

√
τ)n for powers n, so if τ ∼ (α′)2, we would need to consider an infinite number

of such α′ corrections.8 This is the “truncation problem” usually associated with α′ corrections. (An
interesting 1985 discussion of this for the heterotic string is [13].). Here’s a toy example:

8As was astutely observed during my talk, it doesn’t necessarily mean we must consider an infinite number, although
it does in my toy model. It is unlikely, though, that we would need to consider only leading order. Going far beyond
leading order can be OK in gauge theory like QCD where people spent a lot of effort computing e.g. the 5-loop β function,
but in string theory, the leading corrections are barely known, so considering e.g. next-to-next-to-leading order in α′ would
probably require another decade worth of effort. There is no problem with that in principle, but for the purpose of this
discussion, let’s define “an infinite number of corrections” as “far beyond what anyone has computed or is planning to
compute”.
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toy model V : V (τ) = e−τ (1 + ετ +O((ετ)2) truncate−→ e−τ (1 + ετ) (17)

V ′(τ) = e−τ (−1− ετ + ε) != 0 ⇒ ε = (1− τ)−1 ∼ −1/τ ⇒ |ετ | & 1 (18)
∴ inconsistent truncation in (17)

But in LVS, as the name suggests, we find that at least with the current state of the art, it appears that
one can find minima with volumes as big as V = 1015`6s , corresponding to τ of order 1010`4s . Let’s see
how this appears to sidestep the truncation problem, and why I’m writing “appears to”.

KLVS = Ktree + ∆Kα′ (19)
WLVS = WKKLT = W0 +Wnp (20)

We now assume that the volume V is of special form: some of the Kähler moduli, Tb, appear with a plus
sign and some Ts in a separate term with a minus sign (remember τ = ReT ):

V = τ
3/2
b − f(τs) (21)

This is called “Swiss cheese” Calabi-Yau. Plugging (19) and (20) into (7), we find in the large volume
limit V → ∞

VLVS = eKU

(
λ
√
τse
−2aτs

V
− µ

V2
τse
−aτs +

ν

V3

)
(22)

where λ, µ and ν are calculable constants. Despite appearances, these terms are all of the same order in
V; this is because e−aτs ∼ 1/V. The third term is new and causes a big change in the minimum structure
at large volume. This is the large volume scenario, or LVS.

There are a number of uncertainties about this, that are listed on p. 30 of [7] so I won’t repeat them
here, but rather take the optimistic point of view that they will be addressed in the future.

5 LVS string phenomenology

Considering that LVS has only existed a few years, it is surprising how much phenomenology has already
been done with it. Still, there is no comparison with how much phenomenology has been done in say
MSSM-3 models (thousands of papers), so there is certainly room for more work in this direction.

One “drastic” example is [14]. It is drastic in the same sense as Kane et al. In this analysis, however,
there is not much phenomenological difference from the MSSM-3 type models, the main difference being
that the spectrum is a little more “compressed” due to the lower scale of new physics (1011 GeV in LVS
versus 1016 GeV in MSSM-3), so the renormalization group (RG) evolution from high to low scale has
less distance over which to pull the Leff parameters apart. If this was the full story, there would not
be that much of a reason to study LVS phenomenology further. However, this strong similarity with
MSSM-3 models is almost built in from the start in the particular analysis in [14], and there are many
reasons to expect that this statement will not survive further work, e.g. the MSSM itself has not been
properly embedded here. The most recent work on this is from a few days ago [15].

Another issue left completely open is the cosmological constant problem. It can actually affect observ-
ables in principle, since V0 appears in the soft terms. But in practice, it is argued that at least if we plug
in the observed value of Λ for V0, the contribution is numerically insignificant. However, to really answer
this question we would need to know the cosmological constant at the string scale, where we originally
calculated the soft terms, for which we would need to know the RG running of the cosmological constant,
and this is a problem plagued with ambiguities. There are a few ideas how to possibly address this in
LVS, but nothing really concrete so far. This is why I said above that considering Minkowski simplifies
things, even though we ultimately might want to consider de Sitter. The reason we might want to is, as

5



you probably know, that people in my group in Stockholm (and others!) have observed dark energy and
a positive cosmological constant is one way to model that. But, if you only want to do particle physics
(say LHC), it is not clear to me why the observed dark energy will become important right now, and not
have caused some problem in particle experiments say 20 years ago. It would be interesting if that was
the case! But here, let’s consider Minkowski for the external dimensions.

The most recent analysis is quite recent, Allanach et al [16].

6 The present: LVS and the string effective action

Before, we “only” considered supergravity and scalar moduli fields, i.e. closed string fields. Now we need
to consider also open string fields, that will give rise to the supersymmetric version of the standard model.
(If you tend to forget which fields in the low-energy effective theory come from closed strings and which
come from open strings, review Polchinski Ch. 4, especially p.134-137). To write down the complete
effective action it is useful to consider the bosonic action first, then write down the fermionic terms using
supersymmetry. Here, we will not get to that at all, but you should keep in mind that if you understand
the action for an open string scalar boson φ you also know it for its superpartner ψ. The bosonic part
of the most general N = 1 supergravity + gauge theory effective action with at most two derivatives is
Seff =

∫
d4x
√
−gLeff , where (Polchinski eq. (B.2.28))

Leff =
1

2κ2
R−Kφiφ̄j̄

∂µφ
i∂µφ̄j̄ − 1

g2(φ)
tra F 2 − V (φ) + corrections (23)

where the nonabelian kinetic term tra F 2 might be more familiar to you in the coordinates A = Aata,
where tra F 2 = F aµνF

aµν , and where the φi are generic scalars (including both open and closed string
scalars), for which

Kφiφ̄j̄
= ∂φi∂φ̄j̄K and

1
g2(φ)

= Ref(φ) (24)

and V is given by (7). One point of expressing the effective action in terms of K, W and f is that this
is an efficient way to encode the special properties of an N = 1 supersymmetric theory: The functions
f(φ), W (φ) are holomorphic, and Kφiφ̄j̄ is Kähler. (To see how restrictive N = 1 is, just compare a
Kähler metric, which is determined by one function K, to an arbitrary field space metric Gφiφ̄j̄ . Another
example is that we saw in the MSSM that holomorphy of W forces us to have at least two Higgs fields.).
So, if we know K, W and f , we know most of the things we need to know about the N = 1 effective
action9. The “+corrections” in eq. (23) come in two kinds in string theory that have no direct analog in
point-particle theories: α′ corrections (nonzero string length) and gs corrections (nonzero string splitting
probability). One can first wonder if there are other α′ corrections in LVS than the one they considered.
There are, but it was argued that they are subleading at large volume; the one they include is topological
and so persists at large volume. For potential loopholes in this statement, see section 6 in [7].

There is only one qualitatively new kind of correction left to consider: gs corrections. If gs corrections
turn out to make a big difference, it is again at first sight likely that we will end up with an inconsistent
truncation. For the same reason as before, the impression as first sight may be misleading, and it is
interesting to investigate what actually happens. The gauge kinetic function f and the Kähler potential
K are known to receive perturbative corrections, so let’s focus on those. The superpotential W is not
supposed to receive corrections in perturbation theory (see e.g. Weinberg’s book), but here it does in a
certain sense, that we discuss at the end.

9There are also D-terms and Fayet-Iliopoulos terms, but let’s leave them aside for now. Also, if you are used to
renormalizable scalar field theories, the nontrivial Kähler metric can look unfamiliar to you; it produces derivative couplings
like φ2(∂φ)2 which looks nonrenormalizable by counting powers of fields and derivatives (if the mass dimension of φ is the
canonical [φ] = 1, that coupling is dimension 6). The logic of keeping such terms is explained in Polchinski, Appendix B
under “Higher corrections and supergravity”. In any case, gravity is not renormalizable by power counting either.
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6.1 Toroidal orientifolds: N = 2 sectors

The different contributions are classified into “N = 2 sectors” (strings that are stuck at orbifold fixed
points only in some directions), and “N = 1 sectors” (strings that are completely stuck). Watch out
not to confuse this terminology with the total supersymmetry of the effective theory: even an orientifold
model with only “N = 2 sectors” (such as the T6/(Z2 × Z2) orientifold that you might keep in mind as
an example in this section), can produce an N = 1 supersymmetric effective field theory, which is what
we have here.

Let’s now consider the “+corrections” in eq. (23) in turn.
A. Corrections to f on D7-branes(

1
g2

)
=
(

1
g2

)tree

+
(

1
g2

)1−loop

+ . . . (25)

As you know from the first lecture, to find the string loop correction to the gauge coupling on D-branes
of any dimensionality, we can calculate the 2-point function of massless open-string vectors Aµ. We
obtained a result that had terms like (p1 · p2). One technical difficulty is the fact that any massless 2-
point function that is proportional to p1 ·p2 is naively zero by simple Lorentz kinematics. This is because
p1 · p2 = 0 by on-shell-ness and momentum conservation (check this!), even though the end result can be
nonzero due to a pole 1/(p1 · p2) that arises from the integral over worldsheet moduli (for example, the
integral over the distance ν between the two vertex operators). In other words, the apparent vanishing
of the 2-point function can be a 0/0 limit problem. As was explained in a beautiful paper by Minahan
in 1987 [17] we can relax momentum conservation, extract the finite contribution to this amplitude, then
impose momentum conservation again. We cannot relax the on-shell (BRST) condition, since this would
allow unphysical states to propagate. Performing the

∫
d` integral over the Kaluza-Klein or winding sum

Γφ,U (`) gives rise to the string version of the Georgi-Quinn-Weinberg equations: (cf. Polchinski 16.4.32)(
1
g2

)1−loop

= βN=2 ln
Mstring

µ
+ ∆(φ,U) (26)

where µ is the RG scale, βN=2 is the RG β function for the N = 2 part of the theory and

∆(φ,U) = −1
2

ln
∣∣∣∣ϑ1(φ/2π, U)

η(U)

∣∣∣∣2 +
(Imφ)2

4π ImU
(27)

is called the threshold correction10. Here φ means D-brane scalars and U is the complex structure
moduli of the relevant torus on which the D-branes are moving (for example, in the D3-D7 system,
with all branes space-filling, φ can be D3-brane scalars parametrizing motion on the torus transverse
to the D7-branes, then we denote the complex structure of that torus by U). Since 1/g2 = Ref , and
ln |z|2 = ln z + ln z̄ = 2 Re ln z, we have

f1−loop = −2 lnϑ1(φ/2π, U) + . . . (28)

Now, if we have an asymptotically free (negative β function) gauge theory on the D7-branes, we can have
gaugino condensation and generate a Wnp, just as in KKLT. Two comments: first, in the orientifold, the
matter content is strongly restricted, so we need to check whether the theory is actually asymptotically
free so W is indeed generated! (For example, fermions give positive contributions to the β function, see
e.g P& S p. 531). Second, although the superpotential W itself receives no perturbative corrections, it
can receive one-loop corrections by correcting f ! In fact

Wnp = Ae−af = Ae−a(ftree+f1−loop+...) (28)
= A · (ϑ1(φ/2π, U)2a · · ·)︸ ︷︷ ︸

Ã(φ,U)

e−a(ftree+...) (29)

10This is because they come from massive states that become relevant as you approach some mass threshold.
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so we can think of the calculation of the one-loop correction to f as a calculation of the moduli dependence
of the forefactor A in the nonperturbative superpotential. Note that for D7-brane gaugino condensation,
a ∼ 1/ND7 meaning 2a is generally not integer, so there is some interesting branch structure as we move
the D-branes around (i.e. change φ). Incidentally, if the field theory were truly N = 2 supersymmetric,
there would be no loop corrections to f beyond one loop, so the result would hold to all orders of
perturbation theory. Here this is of limited importance since we are interested in N = 1 theories.

B. Corrections to K
The direct calculation of Kähler corrections is a little more involved. One complication is that we are
not just interested in the Kähler metric (e.g. K1−loop

T T̄
which is what we get from these string calcula-

tions, analogously to gauge coupling corrections) but the Kähler potential as a function of all moduli
K1−loop(S, S̄, T, T̄ , U, Ū , φ, φ̄), from which you obtain the Kähler metric by partial differentiation. (For
example, the Kähler potential K appears in (7).) In other words, we have to “integrate” the vari-
ous Kähler metric corrections to find a single function K1−loop, and there are “integrability conditions”.
Also, the vertex operators for scalars depend more on details of the internal manifold (they are “polarized
in the internal directions”) than they do for vectors.

The end result is that we find this correction to the Kähler potential 11

∆K1−loop =
1

128π6

1
S1T 3

1

∑
i∈stacks

E2(φi, U) (30)

where E2(φi, U) is a sum over images and surfaces (eq. (2.68) of [18]) of the generalized nonholomorphic
Eisenstein series

E2(φ,U) =
′∑

m,n

U2
2

|n−mU |4
exp

[
2πi

φ̄(n−mU)− φ(n+mŪ)
U + Ū

]
(31)

Notice that the exponent is just e2πiniai written in complex coordinates, where φ = a1 +Ua2 and ai ∈ R,
as you wrote in Problem 1.1.
C. Consistency check
For the f and K corrections to be consistent, there is a relation that needs to be satisfied. At least at
points of enhanced gauge symmetry φi = 0, there is an “N = 2 relation” between f and K, at each order
in the string coupling. This is similar to the heterotic case studied in 1995 [19]. From there we find

Re f1−loop =
1

2πi
e−KK1−loop

φφ̄
(32)

which reduces, if we plug in results from A and B above, to

∂φ∂φ̄E2(φ,U) = −2π2

U1
E1(φ,U) (33)

where E1(φ,U) is a new name for an old expression, the by now familiar torus propagator:

E1(φ,U) = −π ln
∣∣∣∣ϑ1(φ/2π, U)

η(U)

∣∣∣∣2 + 2π2U2a
2
1 . (34)

(Note that this is not exactly the expression we considered, but its T-dual, as explained in the appendix of
[20]). Fortunately, (33) is an identity (p. 68 in [18]), as you can easily check using the explicit expressions
and your previous experience with E1, so the f corrections are consistent with the K corrections.

11“Kähler adapted vertex operators”. This just means you compute with your usual vertex operators, but combine the
results as we prescribe in the paper. One advantage of this is that integrating to the Kähler potential becomes trivial.
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6.2 Toroidal orientifolds: N = 1 sectors

For parallel branes, N = 1 sectors do not contribute moduli dependence to Leff , so we could ignore them.
For branes at angles, we introduce dependence on T , so we need to calculate the contributions due to
N = 1 sectors. Most but not all of these calculations have been performed as of the time of writing.
A. Corrections to f
There was a nice 2003 paper by Lüst and Stieberger [21] that found that if we discard divergent terms,∫ ∞

0

d`
ϑ′1(ia)
ϑ1(ia)

= −π
2

ln
[
e−2iγaΓ(1− ia)

Γ(1 + ia)

]
(35)

as you found. There is a curious connection to number theory (!), which you can find out yourself by
starting with Appendix A of that paper (which is itself Exercise 6.13 in the number theory textbook
[22]). To wet your appetite, a similar calculation was done in Riemann’s 1859 paper “Über die Anzahl
der Primzahlen unter einer gegebenen Grösse” [23], that founded analytic number theory and stated the
Riemann Hypothesis!

The 2003 paper had a small mistake that was corrected in [24]. The final result is, taking into account
all three T 2 factors in T 2 × T 2 × T 2 with individual angles θi,

∆ = −βN=1
a ln

[
Γ(θ1)Γ(θ2)Γ(1 + θ3)

Γ(1− θ1)Γ(1− θ2)Γ(−θ3)

]
(36)

Even though I am not giving any details of the derivation of (36), your calculation of (35) and the
discussion of computing correlators in the 1st lecture, and the discussion of intersecting branes in the 2nd
lecture, hopefully gives you some feeling for how (36) can arise.
B. Corrections to K
This was performed in 2007 by the Italian group involving our own Paolo Di Vecchia [25] and by the
German group [26]. The calculation gives an intermediate result of the same form as above, e.g. (6.3) in
[26]

Kab ∼ ln[Γab] (37)

where

Γ =
[

Γ(θ1)Γ(θ2)Γ(1 + θ3)
Γ(θ1)Γ(θ2)Γ(−θ3)

]
(38)

and the indices a, b tell you between which brane stacks the angle is. The most recent paper about loop
corrections is the two-point function calculation [27] that considers K1−loop

φφ̄
for chiral fields, which is

what we are most interested in. So to summarize, these calculations are not quite settled yet, but soon
will be.

6.3 Why?

Just a short comment if you are lost in these detailed calculations: the point here was that if we want
to consider some Leff where string effects like α′ corrections make a big difference, as in LVS, we should
better understand all corrections that could potentially contribute with comparable numerical size. For
example, the physical Yukawa couplings, which are of course very important for phenomenology, contain
the Kähler metric of chiral matter fields (see the paper by Brignole at el I referenced in the previous
lecture.)

6.4 Extrapolating to Calabi-Yau with fluxes

The above results for toroidal orientifolds were already technically challenging. For more phenomenolog-
ically interesting scenarios like LVS, we would need to generalize the calculations to curved backgrounds
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with fluxes. This has not been done. Instead, what I did with Michael Haack and Enrico Pajer was to
guess the answer in section 3.1. of [7]. In one sample model with one τb and one τs, we wrote for example

∆K1−loop
gs

=
√
τbE

(K)
b (φ,U)
S1V

+
√
τ sE

(K)
s (φ,U)
S1V

(39)

for some unknown functions E(K)
b (φ,U) and E(K)

s (φ,U). We then found that for order one values of
these functions, ∆Kgs � ∆Kα′ numerically (the latter is given in eq. (16)). However, there are some
miraculous cancellations, that still remain to be completely understood, when you compute the scalar
potential V from (7) using the full corrected K. So, the original LVS results remain unchanged, for the
case of Swiss cheese Calabi-Yaus. It seems that ∆Kgs does make a difference in some contexts, such as
[28] and [15].

One can rightfully be skeptical of the guesswork involved in (39), though we give some arguments in
[7] why (39) gives the right scaling with the Kähler moduli, which is the main issue here. Encouragingly,
there are some ideas how to check this in more complicated cases. This is current work, as I now review.

6.5 Future: checking the extrapolation

According to [29], we can calculate at least some part of the open-string loop correction by a supergravity
tree-level calculation, using open/closed duality. This has only been done for the noncompact Klebanov-
Strassler Calabi-Yau manifold, where the explicit Calabi-Yau metric g̃mn is known. The calculation is
still not easy; the integration over the 4-cycle on which the D7-branes are wrapped is quite involved. It
actually uses AdS/CFT arguments! (I emphasize that when the smoke has cleared, there is no AdS/CFT
duality involved, its only role was to give some very useful hints on how to do the calculation.) The result
is

Ã(φ) = A

(
µP −

∏4
i=1 φ

pi

i

µP

)1/ND7

(40)

where µ is a constant, P =
∑
i pi and the D7-brane embedding is f(φi0) =

∏4
i=1((φi0)pi − µP ) = 0. I

expect this will be extended to other models and that it will be checked what part of the full string
correction this reproduces in simpler models in the future. This development is interesting in itself, in
my opinion. Comparing to eq. (29), we see a similar branch structure.

7 Another frontier: Quantum stabilization

Now that we have explored taking perturbative α′ and gs corrections into account, we could go crazy
and forget about the nonperturbative Wnp completely. This would in principle be nice since this is
typically the murkiest part (cf. the discussion in section 3 about what A in Wnp is, and whether Wnp

is generated for all cycles). If we could find vacua without Wnp, then in these vacua, the fact that the
extra 6 dimensions are small is a quantum string effect, in the sense that both α′ and gs corrections play
a crucial role.12 I find this very interesting, since people have studied the phenomenology of supergravity
models for quite a while, and each new such model is in essence yet another point particle model. String
theory is so different that if such a crucial thing as stabilization depends on stringy effects, that means
that these models should be qualitatively different from other supergravity models, and in principle allow
us to probe string physics at least indirectly.

12Why this terminology? If it was only α′, it could be a classical string effect, and if it was only gs, it could be a
Yang-Mills effect in the limit E2α′ → 0, i.e. quantum but non-string effect. Similarly, Wnp from gaugino condensation is a
quantum effect, but a low-energy gauge theory quantum effect, not really dependent on any string (D-brane) representation
of the Yang-Mills theory. So, something that arises when we consider both α′ and gs is a quantum string effect.
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The bad news for quantum stabilization is that the large volume in LVS was achieved by having these
exponentials in Wnp around. If we don’t have them, generically we might stabilize at small volume, unless
there is some other mechanism. A first glance at this in the string context was [30].

The good news is that if (and you would have to read [30] first to understand this, but that paper is
fortunately very short) we balance a factor of gs against a factor of V1/3, it looks like quantum stabilization
gets better and better for weak coupling, in the sense that we obtain minima at greater and greater volume
V as we lower the string coupling gs. 13 This has not been explored much, partly because one would
want to have more control over the loop corrections before one says too many detailed things of whether
this really works or not, so right now the work in the previous subsection seems more urgent.

8 End: a quick sketch of origins

Many of these developments owe something at least indirectly to AdS/CFT:

AdS/CFT ⇒ Randall-Sundrum⇒ GKP⇒ KKLT⇒ ISS. (41)

so it’s natural that many of these papers have the term ”supergravity dual” in them. We also have

AdS/CFT ⇒ Klebanov-Strassler⇒ GKP (42)

And in cosmology, the circle was closed last year by ending up with Klebanov and Maldacena:

KKLT⇒ KKLMMT⇒ BDKMMM [29]⇒ BDKM[31] (43)

So, all you have to do now is to read all the following references :=)
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