Assignment 1 Problem

Consider $N=(1,1)$ sigma model written in $N=(1,1)$ superfields

$$
\begin{equation*}
S=\int d^{2} \sigma d^{2} \theta D_{+} \Phi^{\mu} D_{-} \Phi^{\nu} g_{\mu \nu}(\Phi) \tag{1}
\end{equation*}
$$

where g is metric tensor. The action (1) is manifestly supersymmetric under the usual supersymmetry transformations

$$
\begin{equation*}
\delta_{1}(\epsilon) \Phi^{\mu}=-i\left(\epsilon^{+} Q_{+}+\epsilon^{-} Q_{-}\right) \Phi^{\mu} \tag{2}
\end{equation*}
$$

which form the standard supersymmetry algebra

$$
\begin{equation*}
\left[\delta_{1}\left(\epsilon_{1}\right), \delta_{1}\left(\epsilon_{2}\right)\right] \Phi^{\mu}=-2 i \epsilon_{1}^{+} \epsilon_{2}^{+} \partial_{+} \Phi^{\mu}-2 i \epsilon_{1}^{-} \epsilon_{2}^{-} \partial_{=} \Phi^{\mu} \tag{3}
\end{equation*}
$$

We may look for additional supersymmetry transformations of the form

$$
\begin{equation*}
\delta_{2}(\epsilon) \Phi^{\mu}=\epsilon^{+} D_{+} \Phi^{\nu} J_{\nu}^{\mu}(\Phi)+\epsilon^{-} D_{-} \Phi^{\nu} J_{\nu}^{\mu}(\Phi) \tag{4}
\end{equation*}
$$

Classically the ansatz (4) is unique for dimensional reasons.
Please, show that the transformations (4) obey the same algebra as (3) if J is a complex structure. Moreover the action (1) is invariant under the transformations (4) if the manifold is Kähler.

The first supersymmetry transformations (2) and the second supersymmetry transformations (4) automatically commute

$$
\begin{equation*}
\left[\delta_{2}\left(\epsilon_{1}\right), \delta_{1}\left(\epsilon_{2}\right)\right] \Phi^{\mu}=0 \tag{5}
\end{equation*}
$$

Notation

Here we collect the notation for $N=(1,1)$ superspace.
We use real (Majorana) two-component spinors $\psi^{\alpha}=\left(\psi^{+}, \psi^{-}\right)$. Spinor indices are raised and lowered with the second-rank antisymmetric symbol $C_{\alpha \beta}$, which defines the spinor inner product:

$$
\begin{equation*}
C_{\alpha \beta}=-C_{\beta \alpha}=-C^{\alpha \beta}, \quad C_{+-}=i, \quad \psi_{\alpha}=\psi^{\beta} C_{\beta \alpha}, \quad \psi^{\alpha}=C^{\alpha \beta} \psi_{\beta} \tag{6}
\end{equation*}
$$

Throughout the paper we use $(H,=)$ as worldsheet indices, and $(+,-)$ as two-dimensional spinor indices. We also use superspace conventions where the pair of spinor coordinates
of the two-dimensional superspace are labelled $\theta^{ \pm}$, and the spinor derivatives $D_{ \pm}$and supersymmetry generators $Q_{ \pm}$satisfy

$$
\begin{align*}
& D_{+}^{2}=i \partial_{+}, \quad D_{-}^{2}=i \partial_{=}, \quad\left\{D_{+}, D_{-}\right\}=0 \\
& Q_{ \pm}=i D_{ \pm}+2 \theta^{ \pm} \partial_{\underline{\underline{+}}} \tag{7}
\end{align*}
$$

where $\partial_{\underline{\underline{\#}}}=\partial_{0} \pm \partial_{1}$. The supersymmetry transformation of a superfield Φ is given by

$$
\begin{align*}
\delta \Phi & \equiv-i\left(\varepsilon^{+} Q_{+}+\varepsilon^{-} Q_{-}\right) \Phi \\
& =\left(\varepsilon^{+} D_{+}+\varepsilon^{-} D_{-}\right) \Phi-2 i\left(\varepsilon^{+} \theta^{+} \partial_{+}+\varepsilon^{-} \theta^{-} \partial_{=}\right) \Phi \tag{8}
\end{align*}
$$

The components of a scalar superfield Φ are defined by projection as follows:

$$
\begin{equation*}
\Phi\left|\equiv X, \quad D_{ \pm} \Phi\right| \equiv \psi_{ \pm}, \quad D_{+} D_{-} \Phi \mid \equiv F \tag{9}
\end{equation*}
$$

where the vertical bar | denotes "the $\theta=0$ part". The $N=(1,1)$ spinorial measure is conveniently written in terms of spinor derivatives:

$$
\begin{equation*}
\int d^{2} \theta \mathcal{L}=\left(D_{+} D_{-} \mathcal{L}\right) \mid . \tag{10}
\end{equation*}
$$

