
Elementary Maple Notes
Marcus Berg, June 2003, updated November 2003

1 General commands (needed for Exercises 1-5)

• :=, defines an expression
Example: expr:= sin(x)+ x^2; (note semicolon) defines the expression sin(x)+x2 and calls it expr.
NOTE: the hat ^ means “to the power of”.

• subs, variable substitution
Example: subs(x=sqrt(g),g^2) substitutes x =

√
g into the expression g2, which yields x. NOTE:

The square root
√
x is written sqrt(x).

• f:= x -> f(x), defines a map (function)
Example: f:= x -> sin(x) and typing f(0) returns 0. NOTE: Doing f(x):=sin(x) doesn’t work:
then f(0) does not give 0. The alternative is f:=sin(x) and eval(subs(x=0,f)), where eval tells
Maple to evaluate the expression sin(0). The latter is OK if you don’t need any values or specific
properties but just want to mainpulate abstract expressions.

• simplify, simplifies an expression
Example: simplify(sin(x)^2+cos(x)^2) yields 1.

• diff, differentiation
Example: diff(arctan(x),x) performs (arctan(x))′ = 1/(1 + x)2.

• integrate, integration, symbolic or numeric. Example: integrate(exp(-x^2),x=0..infinity) per-
forms

∫∞
0
dx e−x

2
=
√
π/2. NOTE: “∞” is written “infinity”.

• solve, solves an algebraic system (or single equation). Example: sol:=solve(x^5=2*x,x);. This
solves x5 = 2x, and returns a list. You can take out elements by op(1,sol), op(2,sol) and so on.
NOTE: The imaginary unit i =

√
−1 is written I.

• plot, plots in 2d. Example: plot(sin(x)^2,x=-10..10);. Click on the right mouse button and
choose “Export As...” to save the plot.

• countourplot, plots contours.
Example: contourplot(sin(x*y),x=0..1,y=0..1,contours=[0.1,0.2,0.3]); The values are the
heights of the contours (try different ones!). NOTE: Needs package plots, load by typing with(plots):

• plot3d, draws 3d plots. plot3d(x^2+y^2,x=-2..2,y=0..2,view=0..1);
NOTE: Use the mouse to rotate the plot!

• for, iteration (using a dummy variable, e.g. i)
Example: for i from 1 to 5 do: print(i^2); end do: gives the sequence 1 4 9 16 25

• dsolve, solves an ordinary differential system (or single equation)
Example: systemsol:=dsolve({ode1,ic1,ode2,ic2},{f(x),g(x)}, numeric, range=0..1,
output=listprocedure);. Maple uses a range of methods to perform the numeric integration.
Here e.g. ode1:=diff(f(x),x)+g(x)=0; and ic1:=f(1)=1, D(f)(1)=1; .
Then to plot you would do odeplot(systemsol,[x,f(x)],0..1);

• read, reads a Maple program (text file)
Example: read "volume.mpl", reads the file volume.mpl, a text file containing Maple commands. It
doesn’t have to have the extension .mpl, but it’s a good idea to call your Maple programs exercise1.mpl,
etc. to remember which of your files are Maple programs.

• #, adds a comment so that later on you remember what a certain calculation does.
Example: If you type # The steps below perform quantization of M-theory, nothing happens.

1



2 Plots in LATEX (needed for Exercise 3)

If you want to include your plot file (an EPS file, i.e. ending in “.eps”) in a LaTeX document, insert the
command \usepackage{graphics} before your \begin{document}, then in the text, insert

\begin{figure}[h]

\insertgraphics{niceplot.eps}

\caption{This is my figure!}

\end{figure}
The h means “here”, i.e. exactly where it is in the LaTeX file. LaTeX doesn’t always succeed in placing it
“here”, e.g. if you are at the bottom of a page, then it will decide on its own.

3 special GRTensor commands (needed for Exercises 6-8)

The GRTensor home page is http://grtensor.phy.queensu.ca. The installation instructions tell you to
make an .mapleinit (for Linux) or maple.ini (for Windows) to tell Maple where to find GRTensor.

• makeg, defines metric
You enter the coordinates with square brackets: [x].
After entering it, Maple asks you if you want to save it.
Example: d[x]^2 + (d[y] + d[z])^2 has a cross term 2dydz.

• qload, loads previously saved metric
Example: qload(schwarzschild)

• grcalc, compute tensor object that GRTensor knows
Example: grcalc(R(dn,dn)) computes Rµν . NOTE: “dn” means “down”.

Known tensors: Chr(up,dn,dn) is Γρµν , R(dn,dn) is Rµν , Ricciscalar is R etc.

• gralter, apply some rule to a tensor
Example: gralter(R(dn,dn),simplify).

• LieD, take the Lie derivative of a tensor along a vector
Example: LieD(v,g(dn,dn)) gives Lvgµν .

• grdef, define your own tensor
Example: grdef(T{(a b)}:=F{a c d}*F{b ^c ^d}) defines a stress-energy type tensor Tµν = FµρσFν

ρσ,
provided the tensor Fµνρ was defined previously. NOTE: A general 5-tensor in 10 dimensions has 105

elements; this makes most computations take too long. Indicating symmetry on the left-hand side
in the definition, as in this this example (antisymmetry: square brackets [a b], symmetry: round
brackets (a b)) makes GRTensor only calculate the relevant components, e.g. it will compute Fxyz
and use Fxzy = −Fxyz rather than computing Fxzy as well.

See the GRTensor manual and the in-Maple help (if you have installed it) for many more examples.

4 Miscellaneous

• In Mathematica, maps are defined with an underscore “ ” instead of the Maple ->, for example:
f[x ]:=Sin[x]. Also note the square brackets and the capital “S” in Sin.

• An interesting Mathematica package is Ulf Gran’s GAMMA for gamma matrix algebra in arbitrary di-
mensions (see hep-th/0105086). It is rule-based and can live without representations.

• Another interesting Mathematica package is FeynArts that can do one-loop and some two-loop Feyn-
man diagram computations. Its home page is www.feynarts.de, where there are many examples.

2



Eight Computer Exercises
Marcus Berg, June 2003

The idea is: when you know how to do it, each of these exercises takes less than ten minutes
to do, and the result is correct. Some of them would take hours to do by hand even if you
know how to proceed, and would be very prone to small mistakes.

Note: I have typed solutions for each exercise. Each one is 3-5 lines of Maple commands.

Exercise 1: Variable transformations and integrals
Compute the Feynman-parameter integral∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
xyz

(xy + xz + yz)3

This occurs in the p-dependent two-loop 2-pt diagram in φ4 theory. It may be useful to first perform a
variable transformation in the integrand (not by hand!). Hint: try x = αβ, then figure out the other ones.

Exercise 2: Simple but tedious numerical checks
Consider a Calabi-Yau manifold. For integer Kähler moduli, the volume of the manifold is a function of
integers mi for i = 1..3. Let’s say a toy version of the volume is

V =
1
5
m1m2m

2
3 + 3m1m

2
2m3 +

1
4
m2

1m2m3 +
407
126

m1m
3
3 +

1
9
m1m

3
2 +

1
3
m3

1m2 +
1
20
m4

3 +m4
2 +

1
2
m4

1 .

Square-integer values (i.e. 1, 4, 16, ...) can mean preserved supersymmetry. Check whether V has any
square integer values for 0 < mi < 7 (harder: up to mi < 20). Note that it is much easier if you set one of
the mi = 0, but technically this is not allowed (none of the cycles should shrink to zero), so make sure to
try for mi > 0.

To save you typing, I predefined a variable volume, get a copy from me and type read "volume.mpl".

Exercise 3: Visualization
The potential

V (x, y) =
1
2
x2 +

1
2
y2 +

1−m√
(x+m)2 + y2

+
m√

(x+m− 1)2 + y2

describes a test particle moving in the presence of two big masses m and 1 −m. What does this function
look like? (You could either do a couple of 2d plots or a 3d plot, whatever you like better.) How much
energy, i.e. height, does the test particle need to pass between the two masses (just read off in the figure)?
Print one plot. Include it in one of your own LaTeX files.

Exercise 4: ODEs
Consider this ordinary differential equation (ODE) system with three functions R(q),W (q), A(q) and a
constant parameter p:

1
4
e2AW ′(R′′W ′ +R′W ′′ +R′W ′A′)− p2R = 0;

W ′(4W − 1
2
W ′′)− V ′ = 0;

A′ + 4
W

W

′
= 0;

3



where the potential V (q) is a given function,

V =
1
8

(1 + cosh4 q)2 − 1
4

(cosh6 q + sinh2 q) .

This system describes fluctuations of a scalar R(r) in the background of a domain wall metric ds2 =
e2A(r)dxidxi + dr2 and domain wall scalar q(r).1 Choose boundary conditions at q = 0.2 such that R
vanishes at infinity, and integrate from some cutoff ε > 0, for example ε = 0.01. Plot the fluctuation R(q).
This is the object that in AdS/CFT would give the correlator (which would be basically R′/R).

To start with you can put the boundary momentum p to 1, but make the plots for a few different boundary
momenta p, e.g. p = 0.1, 1, 10.

To save you some typing, I predefined the system; get it from me and just type read ‘‘ode.mpl’’.

Exercise 5: Special functions
Here’s a type of expression you might find in string amplitudes:

A = K1B(a, b) +K2B(a+ 1, b+ 2) +K3B(a+ 3, b+ 2);

where Ki, i = 1, 2, 3 are kinematic factors, and B(a, b) is the beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b).
Reduce this to a single beta function with an overall factor that is a polynomial in the Ki.

(Hint: Maple has a range of built-in special functions and knows many identities for them, but it isn’t
always clever in applying them. Although B(a, b) exists in Maple as Beta(a,b), using simplify directly
doesn’t work. Why?)

Exercise 6: Curvature computations (requires a tensor package)
Show that the Kerr metric is a vacuum solution of Einstein’s equations. Make sure you understand what
conventions are used and how they relate to the ones you are used to. Check that the vector

v =
∂

∂t
+ ΩH

∂

∂φ

(Wald (12.3.20)), which is tangent to null geodesics generating the horizon, is a Killing vector. Here ΩH =
a/(r2+ + a2) is the limit angular velocity, and r+ = m+

√
m2 − a2.

(Hint: in GRTensor, the Kerr metric is pre-defined, just type qload(kerr).)

Exercise 7: Curvature computations II (requires a tensor package)
Compute the Ricci scalar R(y) of a domain wall in 5 dimensions

ds2 = e2A(y)dxidxi + e2B(y)dy2 i = 1, ..4

in terms of the functions A(y) and B(y).
Does the Ricci scalar diverge at some point? (Answer in terms of properties of A(y) and B(y).)

Exercise 8: Tensor manipulations (requires a tensor package)

Let’s define a toy version of a tensor structure that occurs in string amplitudes, using polarization 4-
vectors eµ1 and eµ2 and momentum 4-vectors kµ1 and kµ2 :

tµνρσ = (k1µe1ν − k1νe1µ)(k2ρe2σ − k2σe2ρ) + (k2µe2ν − k2νe2µ)(k1ρe1σ − k1σe1ρ)

Compute tµνµν (using a flat Euclidean metric), t(µν)ρσ, and tµνρσt
µνρσ. Here antisymmetrization is defined

as A(µν) := (Aµν −Aνµ)/2. You can use ki · ei = 0 if this helps.

1for simplicity, I have set the effective potential to zero, it would have appeared in the R′′ equation. Also I have set α = 1.
It is convenient to use the background scalar q(r) itself as dependent variable, so the above equation are, as stated, functions
of q.

4



Solutions to Computer Exercises
Marcus Berg, June 2003

Exercise 1:
One has to play around a little bit to find a good transformation, such as x = αβ, y = (1− α)β, z = 1− β.

f:=x*y*z/(x*y + x*z + y*z)^3
Jac:=alpha*beta+(1-alpha)*beta;
g:=simplify(Jac*subs(x=alpha*beta,y=(1-alpha)*beta,z=1-beta,f));
answer:=integrate(g,beta=0..1);

The transformation takes care of the delta function, and the result is 1/2.

Exercise 2:
First copy the file volume.mpl to your directory. This contains the definition

V:=1/5*m1*m2*m3^2+3*m1*m2^2*m3+1/4*m1^2*m2*m3 +407/126*m1*m3^3
+1/9*m1*m2^3+1/3*m1^3*m2+1/20*m3^4+m2^4+1/2*m1^4;

Then do

read ‘‘volume.mpl’’; maxint:=10;
for m1 from 1 to maxint do: for m2 from 1 to maxint do: for m3 from 1 to maxint do:
if type(sqrt(volume),integer) then print(m1,m2,m3,volume); end if;
od; od; od;

You wouldn’t really need to do the “if” statement, if you did the easy version, up to mi < 7, you could
just look through the 343 possibilities. The answer is (not counting many answers for setting some mi to
zero): (m1,m2,m3) = (7, 3, 6). This gives V = 8100 = 902. Note: you can also use the shorthand “od” (do
backwards) for end do, and similarly for if.

Exercise 3:
After a little experimenting, I thought this view was pretty good:

V:=x^2/2+y^2/2+(1-m)/sqrt((x+m)^2+y^2)+m/sqrt((x+m-1)^2+y^2);
with(plots):
Vn:=subs(m=0.7,V):
plot3d(Vn,x=-2..2,y=-2..2,view=1..3);
contourplot(Vn,x=-2..2,y=-2..2,contours=[1.8,1.9,2.0,2.1]);

Exercise 4:
This also requires a little playing to get the right initial conditions. I set everything to be one except the
derivative of R at q = 0.2, which I modified to get zero at “infinity”. To me, “infinity” meant q = 10 or
so. In practice, you can check how much the quantity you are interested in (here R′/R) changes if you
make the solution be zero further out, but if there are no small or big parameters in the problem, usually
roughly ∞ ≈ 10. Again, one can check the accuracy by trial and error, going further out and reading off
e.g. systemsol[3](10), this gives the value of the third function (in my case R(q)) at q = 10.

read ‘‘ode.mpl’’; intrange:=0.01..10; p:=1;
icR:=R(0.2)=1,D(R)(0.2)=-1.717066995036805; icA:=A(0.2)=1; icW:=W(0.2)=1;
systemsol:=dsolve({odeR,icR,odeA,icA,odeW,icW},{R(q),A(q),W(q)},

numeric,range=intrange,output=listprocedure);
plots[odeplot](systemsol,[q,R(q)],intrange);

This gives R(q = 10) ≈ 10−14. Fixing it too much makes R′/R do strange things, though.

5



Exercise 5:
This is quick, one just has to realize that an expression is not a function:

B:= (a,b) -> GAMMA(a)*GAMMA(b)/GAMMA(a+b);
A:=K1*B(a,b)+K2*B(a+3,b+2)+K3*B(a+1,b+2);
simplify(A);

Actually the end factor is not quite a Beta function, but can easily be reduced to B(a, b) by Γ(z+1) = zΓ(z),
e.g. by simplify(GAMMA(a+b+5)/GAMMA(a+b)).

Exercise 6:
Make sure you have the package GRTensor loaded. Wald’s vector (12.3.20) is special because it is tangent
to null geodesics generating the horizon, but for the purpose of checking whether it’s a Killing vector, ΩH is
just some constant so we don’t even have to put it in explicitly.

qload(kerr); grcalc(R(dn,dn));
gralter(R(dn,dn),simplify); grdisplay(R(dn,dn));
grdef(‘v{^a}:=[0,0,OmegaH,1]‘);
grcalc(LieD[v,g(dn,dn)]); grdisplay(LieD[v,g(dn,dn)]);

A quick alternative is grcalc(KillingTest[v]) ! If you have the help files installed, you can learn more
about this command by typing ?killing.

Exercise 7:
Type makeg(warped), then enter

exp(2*A(y))*(d[x1]^2+d[x2]^2+d[x3]^2+d[x4]^2)+exp(2*B(y))*d[y]^2;

Finish the makeg (no, this doesn’t count as extra lines!) and then type

grcalc(Ricciscalar); Rscalar:=grcomponent(Ricciscalar);

We see that it blows up if B(y)→ −∞. We would want to solve for A and B and Φ, but this would typically
require some ansatz, such as in hep-th/0004165. If you are interested: try their ansatz (they have two),
with general exponents, and solve for those exponents.

Exercise 8:
Define a Euclidean metric eucl, then type qload(eucl) as usual.

grdef(‘t{a b c d}:=(k1{a}*f1{b}-k1{b}*f1{a})*(k2{c}*f2{d}-k2{d}*f2{c})
+(k3{a}*f3{b}-k3{b}*f3{a})*(k4{c}*f4{d}-k4{d}*f4{c})‘);

Note that you can’t use e1, etc as names since those already exist. To calculate this tensor using grcalc,
we have to define those 4-vectors. First one can try just putting in general components, that works fairly
well for tµνµν and t(µν)ρσ, but not so well for tµνρσtµνρσ, which then becomes too long (over 50 000 words).
One reasonable compromise, which is not completely general, is to pick k1, k2 and k3 to be orthogonal, and
also to impose transversality k1 · e1 by putting some components to zero:

grdef(‘k1{a}:=[k1t,k1x,0,0]‘); grdef(‘k2{a}:=[k2t,0,k2y,0]‘);
grdef(‘k3{a}:=[k3t,0,0,k3z]‘); grdef(‘k4{a}:=[k4t,k4x,k4y,k4z]‘);
grdef(‘f1{a}:=[0,0,f1y,f1z]‘); grdef(‘f2{a}:=[0,f2x,0,f2z]‘);
grdef(‘f3{a}:=[0,f3x,f3y,0]‘); grdef(‘f4{a}:=[f4t,f4x,f4y,f4z]‘);

Note that the Maple code above can be written in two lines! Hence I still have 3 lines left to make it 5:

grdef(‘tcontr:=t{a b ^a ^b}‘);
grdef(‘tanti{[a b] c d}:=t{[a b] c d}‘);
grdef(‘tsquared:=t{a b c d}*t{^a ^b ^c ^d}‘);

Then to check them, you would type e.g. grcalc(tcontr); grdisplay(tcontr);. In this exercise, it is not
clear exactly how useful these fairly long expressions will be, but one can at least check coefficients if one
also does it by hand. For this kind of problem, Cadabra by Kasper Peeters would be a better option.

6


