387N Homework 2:
Wave Equations

Group 2
Marcus Berg
Ethan Honda

Rob Jones

March 10, 1998
http://wwwrel.ph.utexas.edu/ " p387g2

1. The 1D Advection Equation

2. A Massless Scalar Field on a Schwarzschild Background
in Eddington-Finkelstein Coordinates

1 Preliminaries

We will consider the 1-d advection equation

du(z,t) _ du(z,t)

1
ot oz (1)
on the domain
Q={(z,t) | 0<2 <1, 0<t<T} 2)

subject to the initial condition

u(z,0) = uo(x) 3)
and to the periodic boundary conditions

u(0,t) = u(1,t). (4)

We will solve (1)-(4) with a well-known fully-discretized finite difference method, the leapfrog
scheme.

u;“rl = Mujy —uj_q) + u?_l (5)

where A\ = % is the Courant parameter in this case.
We will show that this scheme is well chosen for this problem since it is stable and convergent
for A € (0,1], and is, in fact, error-free for A = 1.

2 Problem la: Analytic Solution

By inspection, we see that any g(z + t) will satisfy (1). Equation (3) demands that u(z,0) =
g(x) = up(x), so our solution, in general, must be

u(z,t) = uo(z +t) (6)
providing that the function ug satisfies the periodicity condition given by (4), i.e.

uo(0) = uo(1). (7)

2.1 Alternate Solution Form

As an aside, we also note that a general solution to (1)-(4) may be written as u(z,t) = uo(z + t)
where
uo(z) = z(z — 1) f(z) + C (8)

and where f(x) is any function defined on [0,T + 1], and C is a real constant. Thus,
u(z,t)=(x+t)z+t-1)f(z+t)+C (9)

satisfies (1)-(4) for any function f.

2.2 Description of Solutions

The exact solution (6) to the 1-d advection equation is that of an evolution equation which “trans-
ports” its initial data to the left with unit speed.

This is not surprising, given that the form of equation (1) itself, essentially a “scaled-down”
hyperbolic PDE, suggests that its solutions might be similar to those of the wave equation.

As an aside we note that in fact, the wave equation can be written as a pair of coupled advection
equations. i.e. consider the following:

ou _ o
ot Oz
o _ o
ot Oz

Then we may write
Pu_ 0 (0u)_ 0 () _ 0 (v)_ 0 (ou) o w0
o2 ot\ot) ot\ox) ox\ot) ox\ot) 022

3 Problem 1b: Difference Operators

Let us define the finite difference operators A and A" on the discrete domain Q" = {(z;,t") |
0<z;<1,0<t"<T}

flz,t+ At) — f(z,t — At)

h —_—
flz,t + Ah) — f(z,t — Ah)
= 11
2)\h (1)
A _ fl@+Azt) - f(z - Az,t)
fl+ht)— flz—ht)
= 12
5 (12)
With these definitions, we can write a finite-difference solution to (1) as
(A} — AU =0 (13)
Now, let us expand f(x,t) in a Taylor series about ¢t + Ak and t — \h.
_ af (M)2o%f (\h)®3%f
flz,t+Ah) = f(ac,t)+)\hat + 5 a2 T
(Ah)* o f 5
21 g T OU)
- of L (An)?2&f (Ah)*O%f
flxz,t—=AR) = f(z,t))\hat + 5 o2 e
(AR)* 04 f 5
21 g T O)
Combining these terms, we get
_ of | ,(\h)* &% f 5
f(z,t+Ah) — f(z,t — Ah) = 2/\hat +2 T + O(h°)
flz,t+ Ah) + f(z,t — Ah) af (A2 o3f 4
= = — 4+ O(h 14
I\ ot 6 ae PO (14)
And comparing this with (11), we arrive at
Ah)?
Af =8+ (Ah) Byt + O(h*) (15)

6

We will proceed similarly for AL

B of h2O%f K3Of RhLOrSf 5
flx+ht) = f(z,t) +h—ax + 3 a2 + 923 + 24 921 + O(h°)
B of ~h**f NWPO°f htof 5
flx=ht) = f(z,t)— h_ax + 252 6 928 + 24 5t + O(h’)

3

Thus, we have
flx+h,t)— f(x—h,t) Of h*&f 4
oh =3 T 6o TOW) (16)

And comparing this with (12), we see

2
We may then write, by substitution into (13),
Ah)? h?
[3t + (6) Ostt — Oz — fﬁzzz u(z,t) + O(h*) =0 (18)

If we now define the local truncation error, ", via
™ = (Ah — Ay

we find that N 12
(6) 8ttt - Eazzz]u(xa t) + O(h4) (19)
But the advection equation (1) tells us that the first-derivative terms are identically zero, thus we

have

™ = (8, — 8,)u(z, t) + [

Th = I:()\Z) Om - %azm] u(a:, t) + O(h4)
™ = O(h?) (20)

Or, put more simply, the leapfrog scheme applied to the advection equation as given in (13) is of
second-order.

4 Problem 1c: Richardson Expansion

Let’s assume that the solution, u”, of the difference equation (13) admits an asymptotic expansion
of the form
u(2,t) = u(x,t) + h2ex(x,t) + htes(x,t) + O(hS) (21)

where the odd order terms in h have been omitted due to the symmetry of the finite difference
operators (11) and (12). i.e. for the same reason that the odd order terms in h vanished from (14)
and (16).

Substituting (15), (17), and (21) into (13) we find
(Ah)? h?

6 Out — Oz + Famzm) (u + h?ey + h4€4)= 0 (22)

(at +

which can be expanded fully to yield
du MNh23%u Ou Rh?2O%u ,0es ANhtd%, ,0e

%6 9 9r 692 " a6 o Var
h4 3362 4064)\2h6 6364 4364 h6 3364 -0 (23)
6 Ox3 ot 6 Ot3 ox 6 Ox3

We now demand that all the terms in (23) vanish order-by-order so we may collect the terms of
each order seperately.
The O(1) terms yield the original advection equation (1).

ou Ou
—_2=0 24
ot Oz (24)

The O(h?) terms then give us a partial differential equation for the leading-order error function
€2

dey Bey AN OPu 183
9 ox T 608 6oa

where the function u(z,t) = ug(z + t) is the same function defined by (6).
We can then, without loss of generality, assume that the solution to (25) is of the form

=0 (25)

ea(z,t) = At f(x + t) + g(z +¢) (26)

where f(x) and g(x) are arbitrary functions and A and « are arbitrary (nonzero) real numbers.
Then

% = Aot ' f(z +t) + At f (z +t) + g/ (z + 1) 27)
% =At*f'(z+1) + 4@ +1) (28)

Since we also demand that the initial condition (3) be an exact solution of (1), we know that
es(z,0) = 0. Therefore, the function g in our ansatz for es must be identically zero (since it must
be zero for all x when ¢ = 0). Then, substituting into (25), we have

362 862 1
=222 = Aat® t
ot oz ot™ fla+1)
1—)\2
= Tuo'"(x +1) (29)
which can only be satisfied if
1—)2
A =
6
a = 1 (30)
fla+t) = u'(z+1)
Thus the general solution to the PDE (25) is
)2
es(w,t) = tuy" (z +1t) (31)

and the leading order error in the difference solution (13) is h%ea(x, t).
For the given initial data

—(=3)?
uo(x) = e 008 (32)
we have
—(a4t—3)2
u(z,t) = e o052 (33)
and

1 2 _1)¢(197 — 1194 24 2_1 3
ex(a. 1) = 60000(A\2 — 1)¢(197 — 119 (x:+f)_ +] 00(z + t)2 — 1600(z + t)?) (34)

3e” 0.052

5 Problem 1d: Leading Order Error Estimate

Let’s assume that we have two separate solutions to the difference equation (13), u” and u?",
computed at resolutions h and 2h respectively. Then

u" =u+ h%e + O(h?) = u=u"—hes + O(h?)
u?® = u +4h%e, + O(h') = u=u?" —4h%e, + O(h")

i.e. both give O(h*) approximations to the actual solution, u. Equating these approximations, we
find

uP —h2es = u? —4h%es
3h2ey = uih -yt
1 2h h
ey = W(u —u) (35)

6 Problems le and 1f: Computational Solution

We have written several computational solutions to the 1-d advection equation: one C program
based on the method described in the previous section, one RNPL implementation of the same
leapfrog scheme, and a semi-discrete solution using the numerical method-of-lines in Fortran. We
found that the programs agreed quite well with each other.

6.1 Fully discrete leapfrog solution program advectld

We first solved the advection equation with the fully-discrete, explicit leapfrog integration scheme.
The advect1d program has the following usage:

advectld <level> <olevel> <nc> <lambda>

where, the level parameter gives the grid size and spacing; the grid contains 2/**¢! + 1 points
evenly spaced between 0 and 1. For our purposes, lambda takes on values in the 5-10 range. The
olevel parameter controls output frequency, which occurs every 2/¢vel=clevel timesteps. The nc
parameter is a measure of the number of times a pulse would cross the periodic grid assuming a
lambda ~ 1. And lambda is the Courant number, or ratio %.

At each output step, we display the computed solution, the exact solution, the absolute error
between these, and the leading order error term h2e,. Internally, our program follows a simple
schematic:

1. Read input values for level, olevel, nc, and lambda from the command line
2. Set initial data using the exact (analytic) solution obtained in section 2
Advance the solution in time using equation (13)

Zlevel—olevel

Output solution if necessary (every steps)

ook w

Repeat (3)-(4) until the final time is reached

For coarse grids, (level < 6), the error is (naturally) larger than for finer grids, and the
deviation of the computed solution from the exact solution grows roughly linearly in time (see
figures (1) and (2).

We note that “course grid” is defined as a grid for which the initial pulse spans only a few grid
points. To accurately represent the pulse, we demand that it cross at least 4 grids, and the more
it crosses, the better the results will be.

6.2 RNPL advectid program

We used RNPL to find a second solution to the advection equation. The very nature of RNPL
made this a relatively simple task. We started our RNPL program with a system parameter
statement that declared the amount of memory to be allocated to this program. We then declared
the program parameters (which were all of type float) with a statement of the form parameter
float varname := default value. We then defined the coordinates, the grid structure, and
the grid variables where we chose rectilinear coordinates z and ¢ (this is a 1-D problem, so on a
uniform grid, there is no difference between rectilinear x and ¢ versus polar r and t). Since we are

Figure 1: Leapfrog evolution for level=7, nc=3
behind the pulse.

lambda=0.8. Note the little

“bump” growing

fit p
,,","’"‘ m, : /k

A
i gy T

Jy ik ey
it y,mn,m, Y e
< 'u '?.'h"\“u’r, rr‘

\\/’\r
i i o
s i
2 Af;ruw
-
I
il
i

Figure 2: Error level=7, nc=3, lambda=0.8

Leapfrog and Semi-Discrete Solutions (level=7,nc=3)
T T T T T

12 .

202 ! ! ! ! ! !
0 20 40 60 80 100 120

Figure 3: Comparison. The dashed plot is the leapfrog solution, and the solid line is the semi-
discrete solution for level=7, nc=3, lambda=0.8

using a leap frog differencing scheme, we define the grid function phi at the retarded, current, and
advanced time steps (-1,0,1). The operator statements define the time (and space) first derivative
(second order center-differenced) operators. We initialize our grid function with the given initial
data of phi being a Gaussian pulse. Finally, we ask RNPL to loop through solution iteratively and
update the solution for phi automatically.

The usage of the RNPL program is advect1d parfile where parfile contains the parameters
necessary for running the program. These include user defined parameters (which will over-write
the values specified in the RNPL source) and parameters created and used by RNPL. The minimum
and maximum z values for the domain are set to 0 and 1.0, respectively, and the initial data
parameters for the gaussian (amp, cent, and sigma) are also set as specified in the problem set.

6.3 Semi-discrete Solution

The semi-discrete solution we have implemented uses higher order finite differences (a 5-point
scheme: ﬁ (U]‘_2 —8uj_1 + 8ujqpq — Uj+2) which has a leading order error of %h“ for the spatial
part of the advection equtaion and the LSODE integrator from the first assignment to advance the
time-dependent part of the equation). Which is to say, for every grid point in the spatial domain,
we generate a first order ODE to be solved with LSODE. The ODEs for all the grid points are
coupled, and therefore, are advanced simultaneously by LSODE. For smaller grids (level = 6),
this scheme produces results with errors perhaps % the size of the errors seen in the fully-discrete
solutions with no appreciable difference in computing time. As the grid grows larger, however, the
semi-discrete solution takes far longer to produce output (which is natural, since it is solving such
a large system of coupled ODEs).

6.4 Code Tests and Comparisons

We performed a few basic tests of the code to insure that it was working properly. Simply compar-
ing the results produced by different implementations (particularly comparing the fully-discrete
leapfrog solutions with the semi-discrete method-of-lines solutions) is very informative, since, while
the two integration schemes may both be in error, it is very unlikely that they would produce the
same errors. These comparisons are seen graphically in figures (3) and (4).

Since the C and RNPL versions are implementing the same explicit finite-difference scheme on
the same grids, they quite naturally have almost exactly the same output. The differences between

0.6 - [Overlay of RNPL and Hand—Coded
r level 6 Solution 1

Phi

Figure 4: Comparison between handcoded and RNPL solutions.

them are almost exclusively due to the way the initial conditions are set up (specifically, data for
the first time step, which is required to get the leapfrog scheme started, but which is not computed
by the leapfrog method). In the C program, the first time step is computed exactly from our
analytic solution. In the RNPL, the first timestep is generated by iteratively applying a leapfrog
scheme on a half-sized grid.

We also performed a simple convergence test by running the programs for three consecutive
values of the level parameter. Then, following the logic suggested by sections 4 and 5, we subtract
the solutions on the finer grids from the solutions on the coarser grids i.e. forming u?* — u" and
u*h — 42", To show quadratic convergence, we plot 4(u*" — u2") and u?" — u" on the same graph
and note that they are approximately equal. The convergence factor graphs are figures (5) and
(6).

Additionally, for the hand-coded C version of advectld, we plot the absolute error and the
expected leading order error on the same graph. For coarse grids, these can differ markedly, but as
the grid size is increased and the leading order error term comes to dominate the the total error,
these graphs line up nicely. For level = 10 the two graphs are almost exactly coincident.

6.5 Directory Structure
The files for the C version of the advect1ld program are located in:
/d/feynman/usr/people/p387g2/hw2/pl/advectid
The files for the RNPL version are located in:
/d/feynman/usr/people/p387g2/hw2/pl/rnpl
The files for the Semi-discrete solution in Fortran are located in:

/d/feynman/usr/people/p387g2/hw2/pl/semi-discrete

«
©
9

Convergence Factor
@
©

3.85

3.8

3.9

Convergence Factor

3.8

Convergence Factor vs Time
for levels 8,9,10

o

0.5 1 1.5 2
time

Convergence Factor vs Time
levels 8,9,10

time

Figure 6: Convergence for the RNPL solution.

10

The files for the latex documentation are in
/d/feynman/usr/people/p387g2/hw2/pl/latex

Our web page, containing more information about the solution to these problems, with MPEG
sequences and GIF images showing additional data is at:

http://wwwrel.ph.utexas.edu/ p387g2

11

