1 Problem 2a: Characteristics

One can derive the characteristics of the spacetime either from the 3+1 metric
ds® = (—a® + a?B%) dt* + 24° Bdt dr + a® dr® + r* dQ (1)

or from the field equations themselves. We show here the simpler analysis on the metric. Since
massless scalar field radiation propagates along null geodesics, we can use the null condition to
find the characteristic velocities in the radial direction. The radial null condition reads

ds? = (—a? —a?B?) dt* + a*dr®> =0

which one can solve for (dr/dt)+ to find:

dr «Q
(&), =<5

This is the coordinate speed of light in the radial direction.

2 Problem 2b: Equations of motion

We want to write out the Klein-Gordon equation V¢V,¢ = 0 in terms of & and II, where
(P(Ta t) = ar¢
a
M(rt) = =06 Bor9)

2.1 Evolution equation for ¢

The definition of IT gives
e

but 8T(8tq§) = 0t11>, SO
0@ =0, (2T + 50,9) 2)

2.2 Evolution equation for II

The equation for IT is a little more involved. We can start from the covariant expression

1
O¢p = ——0.(V/—9g9g""0, 3
Now O¢ = 0 implies
0 = 9u(vV-99"0.9)
= 0(V-99"0,¢)+0:(v/~=99""0.9)
The determinant of the 4-metric is g = a2a?r*sin @ so we divide by siné ! to obtain
1 1 2
0=20 [aar2 (—Eatqb + %&qﬁ)] + 0, [aar2 ([? - %] ord + gaﬂb)] (4)
where we used the “upper left” components of the inverse metric:
gtt:_l/aZ , gtT:ﬂ/OéZ , gTT:]./a2—,82/052 (5)
We now identify ® and IT in equation (4)
217y 2 Q@
8,(r?TI) = 8, (r (61‘[4— a@))
or, finally,
1 2 a
oI = =0, (r (m n E(I))) (6)

19 = n - 27 is excluded for regularity of the metric.




3 Problem 2c: IEF coordinates

We have the Schwarzschild metric
2M oM\ !
ds? = — (1 — —) dt® + (1 - —) dr? + r2df
r r
and adopt a new timelike coordinate #
- r
f=t+2MIn (—2M - 1)

To rewrite the line element, we use the “differentials” mnemonic for our one-form:

. ot ot
1 1 r -1
= dt”MW(m) dr=di+ (g7 =1) dr

We are now in a position to calculate

—(1—¥)dt2 - —(1-?) [dt”z—2(ﬁ—1>_ldt~dr+(ﬁ— )_er2]

A useful identity is
(z—1)t=@1-1/2) 1 -1

Using this we obtain for the expression in square brackets

rr (-5 e (052 (-5) ) o]

Simplifying, we find

2M aM - 2M
ds* = — (1 - T) di* + ——didr + (1 + T) dr® + r*dQ2 (7)
for the new line element, the ingoing Eddington-Finkelstein (IEF) coordinates.

4 Problem 2d: Lapse and shift

Starting from the IEF line element, we can identify the quantities a, § and a by comparison to
the general 3+1 metric (1). We find immediately

O 1/2 r —1/2
a=<l+7) Z(m)

Second, we identify the g,; component as a?§ :

r _1ﬁ—2M
r+2M Ty

ﬁ=%< r >: 2M

or

T r+2M r+2M

Finally, the g;; component is given by —a? + a?32:

) ro\ [ 2M \? 2M
—o? + =—(1-==
r—+2M r+2M r




or

s (1 B %> . (2M)? _ (r=2M)(r+2M) — (2M)?
“© = r r(r+2M) r(r+2M)
T r+2M

so that in terms of the general 3+1 form we can write for the IEF metric

, 1/2
= (r + ZM) ®)
, —1/2
a = (m) = Oé_l (9)
M
p r 3— 2M (10)

5 Problem 2e: Wave equation in flat space
We want to see what the wave equation
VeVaé(r,t) =0

looks like in the limit » — co. From the expressions (8)-(10) above one finds a(r) — 1, a(r) — 1
and 3(r) — 0, so one way to find the limit is to study the Hamiltionan equations of motion for &
and II, equations (2) and (6):
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The equation of motion for ® turns trivial, but the II equation reduces to

%¢=%@4ﬂa@:%&¢+a@:%aﬂm)

or
0st(r¢) = Orr(r9)

Of course, we could also just have done the calculation using the general expression (3) for D¢
applied to the Minkowski metric in spherical coordinates. A third way to do the problem would
be simply to quote the flat space O = d;; — V2 and write out V2 in spherical coordinates.

6 Problem 2f: Initial conditions

It is assumed that the initial configuration of the scalar field ¢(r,0) = ¢ describes a “pulse” shape.
We also make the approximation that the initial condition for ¢ is

O (rg) — 0,(r¢) =0 att=20 (11)
The definitions (2) and (6) of ® and II can be expressed
8 = % I + 3

whence we see that p
Bo(r) = B(r,0) = 3,0(r,0) = 20 (12)



The equation for 0;¢ can be used to rewrite the initial condition as
!
T(gﬂo-#ﬁ‘l’o) —¢o—1Po =0

which, together with equation (12), gives

_ dd
P = G

_a (9o doo
m = 2(2ra-pit) (13)

These are the initial conditions we use, with a given Gaussian ¢g.

7 Solution of the Equations of Motion

7.1 The mass function

The energy-momentum tensor for a massless scalar field is
1
Tob =VapVpd — 5 Jab V.V

We will again consider the general 3+1 form, and use the “upper left” components (5). Using
these and the expressions for ® and II it is easy to show that the only nonvanishing components
of Ty in this coordinate system are

1 2
T, = -(% +p2) (@ +112) +2%sm
2 \ a2 a
1
T, = 5ﬁ(<1>2+112)+5<1>11
a
@2 2
T, - ¥+
2
Now, the spacetime is static, so 0; is a Killing vector, and the associated conserved current is

J* =T,

where V,J% = 0. We now integrate the divergence of the current over a region U of spacetime and
use Gauss’s theorem:

0= / Vo J4dV = / J* n dS (14)
U oU

but there is no contribution to the integral at spatial infinity, so n® is simply the hypersurface
normal vector whose dual vector has components n, = (—,0,0,0). Equation (14) tells us there
is no flux of J%n, across the boundary OU. Thus there is a conserved “mass” which is found by
integrating J®ny = T%t,n, = T,t*n® over the region of interest.

We wish to express this quantity in terms of our 3+1 coordinates:
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We integrate this over the region of interest using the invariant 3-volume element +/det(g;;) d>:

oo 2 2
m(t) = / (%w + p @H) 4mr? a dr (15)
oM a a

where r = 0o denotes the outer boundary of the grid. If some of the scalar radiation falls into
the black hole, the quantity m(t) will not be conserved, and we can compute the amount of mass
which falls in.

7.2 Problem 2g: RNPL Program

We solved the Klein-Gordon equation in IEF coordinates, again using RNPL. In writing the dif-
ference equations within the RNPL code, we employ three auxiliary variables, templ and temp2
for the arguments of the spatial derlvatlves in the & and 1T equatlons respectlvely7 and density
for the quantity that we integrate to get our conserved “mass” (15).

As in problem 1 with advect1d, the parameter file contains both user defined parameters and
parameters necessary for the numerical evolution. The important user defined parameters here are
xmin, xmax, A, r0, and delta, where xmin and xmax are set to 2 and 160, respectively. 2 4, r0,
and delta are the amplitude, center, and width of the “gaussian”? initial data.

We tested the convergence of the program by calculating the convergence factor, as shown in
figure (1).
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Figure 1: Convergence factor as a function of time. Quadratic convergence is upheld at least until
the pulse hits r = 2m, from where it is convergent but not quadratically so.

7.3 Parameter Space Survey and Looper

The RNPL program (wave rnpl for the RNPL source or wave for the executable) will time evolve
one set of initial data (one pulse) and we can watch the pulse be absorbed or reflected by (or off)
the black hole. We wish to test a large range of initial data so we can look at how the absorption
varies as we vary the width of the pulse. To do that, we first must develop a method to efficiently
determine the initial and final masses, since the absorption can be defined as 1 — M fina/Minitial
(the reflection is clearly M finqi/Minitiar)- We accomplish this by manually adding one short line

2Here we should note that since the mass, M, is a user specifiable parameter, if the user changes the mass, he/she
will probably also want to restrict the computational domain (xmin) to xmin = 2M.
31 is the amplitude of the gaussian which is divided by r for the solution of the spherical wave equation.



to the updates.f file that is generated by RNPL. At the end of the file, before the return and
end statements, we insert write(11,*) mass n(gl Nx) to output the total “mass” (the mass at
the outermost grid point) to a file (fort.11) during every iteration. This then gives a data file for
each run that has the total mass at every time step. We need not output the time as well, since
we are only interested in the initial and final masses.

The program that we use to survey the parameter space is looper.c and its usage is looper
<start_delta> <end delta> <no. of delta>. The looper program runs wave for a range of
delta between <start_delta> and <end delta>. It sets these values in the parameter file using
the Setpar script provided for us by the instructor. The looper then executes wave with the
updated parameter file and extracts the initial and final masses from fort.11. It then writes
the delta, initial mass, final mass, and the amount reflected, to absorption.dat. Finally, it
deletes the temporary files and continues with the next value of delta. The remaining data file
(absorption.dat) can be used by any plotting program to view the absorption/reflection as a
function of delta. The absorption is shown in figure (2).
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Figure 2: Absorption as a function of pulse width.
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