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1 PROBLEM 1A: EQUATIONS OF MOTION

1 Problem la: Equations of motion

We start from the space-time metric in polar-areal (PA) coordinates.
ds® = —a®(r,t)dt* + a®(r,t)dr?® + r?dQ> (1)

The matter content is described by a single function W = W (r, t) called the Yang-Mills poten-
tial. The action for the Einstein-Yang-Mills system is

I:/d‘*:vﬁ:/d‘*m\/—g(R—FaMLM)

where a) is the matter coupling constant and L), is the matter Lagrangian. In PA coordinates
the matter Lagrangian can be written in a deceivingly attractive form:

yng _ 2\2
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Taking ajs = 4 and substituting the matter Lagrangian we have

I= /d4:v\/—_g (R —4 [ng”:fv”w + %(1 — W2)2D (2)

rd

1.1 Equation of motion for II

To find the equation of motion for II, we proceed to extremize the action I. First we vary with

respect to W:
/d“x {—4\/—_ 1 (2(1 — WQ)(_QW)) 6W}

ré

_ w2
/d4x\/_7(1 w )(5W
then with respect to 0, W:
5 = —4 [ d'z —"ng 29" 57 8,W 5(3,W)

8 / d4x—v;gg’“’5MW By (W)

= /d4xc’9 ( I grea, W) oW

where in the third step we integrated by parts and discarded boundary terms. We used the
equality of mixed partials, viewing 6() as the partial derivative with respect to a (suppressed)
parameter parameterizing a family of potentials. The derivative of the term in parentheses can
be rewritten, dividing by \/—¢g = aar? sin@ for later convenience, and taking § = 7 /2,

o (o) = koo () va (25 )
- okl () o (o)
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1 PROBLEM 1A: EQUATIONS OF MOTION 1.2 Equation of motion for ®

where we have used the definitions
s=w' , IO=3w . (3)
«

Thus the complete variation of the action can be written

5I = /d4x\/—_g{ 1 [—H+ar(%q>)]+w(1+4wz)}5w

aar?

Since the variation §W is arbitrary, we find the action is extremized provided

acjﬂ [H —o (%@)] - M

or

= (%@)I+%W(1—W2) @)

1.2 Equation of motion for ¢

The equation of motion for @ is trivial to uncover:

b = 8W')=08,(W)=9, (% gw)
- oo
or
b = (% H)I (5)
1.3 3+1 Quantities
The stress tensor is
T, = Oé—f (— ggjﬁ + %Q;WLM>

1 L 1 (1-W2)?
o (auwauw — S G QWO = g

In terms of 3+1 components, we have to substitute components of the metric (1) and its inverse,
and then replace occurrences of derivatives of W by suitable & and II:

Tu = g (W= 50 [- W7 4 7P = f(=e?)

2mr? 2
1 a? a?
— = @2 H2 ~ (1— W2 2
4mr? a? ( T 27’2( )
1 .
r = ww'
Ty 27rr2( )
1 «

2112 a
1 1 1. 1 A 1 (1 —W?2)2
T., = <(W’)2 P [——W2 + —(W’)Z] _ Zaz( ) )

272 2 a? a?

_ 1 @2+H2—a—2(1—W2)2
T 4qr? 2r2




1 PROBLEM 1A: EQUATIONS OF MOTION 1.4 Hamiltonian constraint

Using the components of the (hypersurface) normal vector and its dual one-form,
n =(1/a,0,0,0) , n, = (—a,0,0,0) ,

we can calculate the only non-vanishing components of the 3+1 quantities p, j; and S;:

p = n*n'T,, =n'n'Ty
1 1 o2 a?
— - = @2 H2 —~ (1— W2 2
a? 4mr? o? ( T 2r2( )
1 ®2 4+ 112 1
= — (== 4 —(a-w?? 6
42 ( a? + 21"2( ) ) (©6)
jr = —n, " =-—n,g"T,,
= —ntgttTtr
1 1 «
= —(- —— )| —=—90II
(=a) ( oﬂ) 27r? a
1 oII
_ _ - 7
2mr? a (™)
S'rr — VTka:r — ,YTTTTT
1 1 a?
- @2 H2 -~ (1= 2\2
a? 4mr? ( * 27"2( W)
1 (924112 1
= T (1-W?? 8
47mr? ( a? 2r2( ) ) (&)
so we can write down the constraints.
1.4 Hamiltonian constraint
The Hamiltonian constraint of the 3+1 formulation reads
R+ K?-K%K", =167p
In PA coordinates K% =0, b= 1. We find
R = 16mp
and the Hamiltonian constraint can be written, writing R out in this coordinate system,
! 2
-1
g9 —4rra’p =0
a 2r
Substituting for p from equation (6) we find
a a?-1 . 1 &2 4+ 112 1 .
a — drra? A w22 _
at o ra (471’1"2 ( 2z T 2T2( w9 0
or
a a*—-1 1 a?
— —— (4P + —(1-WH?) =0 9
a + 2r r ( T 27"2( ) ©)

for the Hamiltonian constraint.



1 PROBLEM 1A: EQUATIONS OF MOTION 1.5 Slicing condition

1.5 Slicing condition

The evolution equation for the mixed form of the extrinsic curvature is
1
LK% = £ﬁKab —D*Dya+a (Rab + KK% + 8n (iJ_ab(S — p) — Sab))

From this, and the evolution equation for the spatial metric, the slicing condition in spherical

symmetry reads
o a?-1

a 2r
and with the expression we found for S”, in PA coordinates (8), this is

! 21 1 B2 4 112 1
o _a _4m2(_(; _(1_W2>2))=o
T

—4d7ra?ST, =0

o 2r 472 a? 22
or
o a®?-1 1 a?
—— P24+ - —(1-W??2) =0 10
« 2r 7"( + 27"2( ) (10)

1.6 Evolution equation for «

The 341 evolution equation for the spatial metric ;; is
LiYap = —20K b + £5Yap

From this, the evolution equation for the spatial metric components v,;; can be written as
follows. (Since t is one of the coordinates, the Lie derivative £; reduces to 9;.)

Yij = =207 K*j + B*0kvi; + k058" + 11;0:8°
and for PA coordinates 3* = 0, K% = 0, so we find:
a4=—aaK", (11)
We now use the 3+1 momentum constraint
DyK® — D°K = 8rj°
to eliminate K7,. This constraint in PA coordinates and spherical symmetry is
K", = 47nrj,

With the expression we found for j,, this component of the extrinsic curvature is

4 1 &oII

r | — Bl

T 2rr? a
2

= ——&II

ar
We substitute this back into (11) to obtain

2
a=—aa <——<I> H)
ar

Thus the evolution equation for a is, finally,

a=sm . (12)
T

K",

This equation will not be used for evolution of a but rather as an independent residual check.



3 PROBLEM 1C: INITIAL DATA 1.7 Summary of equations of motion

1.7 Summary of equations of motion

We collect equations (4), (5), (9), (10) and (12), which make the complete set of evolution
equations (with check) for the Yang-Mills potential and the geometric variables:

) ]
b = (gn)
a
!
m = (&1)) + 2w -w?)
a r
a a2—-1 1 a?
— — (4P + (1 -W?H?) =0
a * 2r ( + +2r2( )
o a—-1 1 a?
— - —— (O 4+ - —(1-W?H?) =0
a 2r r( + 27‘2( )
2
a = 2a11
r

2 Problem 1b: Verifying the Equations

We have a maple-file which displays this verification. It is located at hw3/maple/check.ms,
but is also reproduced in the appendix.

3 Problem 1lc: Initial Data

For the weak-field regime, we can consider
a(r,t) — 1

a(r,t) — 1

We define
Wo(r) = W(r,0)

In terms of @, this leads to the expression

®(r,0) = W'(r,0) = Wy(r)

and in the weak-field regime
a .- -
H(T, 0) = EW |t:0 — W |t:0

If we take IT to be a “pulse” in the sense that I ~ IT’ initially, then
I(r,0) ~ W'(r,0) = Wi(r)

Also, we wish to impose an approximate outgoing radiation boundary condition. Since the
solution for almost flat space behaves as a wave on a one-dimensional string, it is natural to
impose

W' (r,t) = W(r,t) as  r— 00
In terms of ®(r,t) and II(r,t), this means

®(r,t) =I(r,t) for r— oo



4 PROBLEM 1D: TYPE I CRITICAL BEHAVIOR

4 Problem 1d: Type I critical behavior

4.1 Basic methodology

We consider the initial data given by

1+ (r2 —r%)/8?

W(r;ro,0) = (1+ (2 —12)/02)2 1 4r2) /2

(13)

where 7o and § are adjustable parameters. When sufficiently far away from the boundaries of
the grid, this data represents a “kink” centered at ro with width controlled by 4. This 4 is the
parameter (often called p) which interpolates within the family of initial data. It is worthwhile
to note that

large § = weakly gravitating
small § = strongly gravitating

since this can easily be confusing.

The search for a critical solution is a parameter survey in J, performed as a binary search.
In the evolution, the initial data first moves inwards towards r = 0. At some point during the
evolution, the pulse slides itself onto the static Bartnik-McKinnon solution [1] (see section 4.4).
It sits there for a certain time 7', the importance of which is discussed in section 4.3. Since the
solution is unstable, it can now either form a black hole, where some matter is trapped, or all
matter can disperse to infinity. To automate the search, we need to quantify these two cases.
Somewhat arbitrarily, but with confidence from many trial runs, we use the following criteria
to determine what the state is at a given #o:

e black hole formation
max(W(r,t9)) > 0.90

e dispersal
max(W(r,t0)) < 0.2 and
the maximum is stationary or moving right for the previous 200 integration steps.

If neither of these criteria are fulfilled, the evolution continues. If one of these is fulfilled, the
current ¢ is marked as either black hole or dispersal, meaning its value is put in either the
supercritical data file, called .bshi, or the subcritical data file, called .bslo. Again, we note
that the supercritical data set contains the smaller values for ¢ and vice versa.

The number we find for the critical solution in this way naturally depends on the grid size
we are using. The following table summarizes the results:

Binary search
Level | Grid size | Critical §*
2 512 1.6589264600305(55-84)
3 1024 1.6605673790491(56-84)
4 2048 1.6608818545205(41-69)

[AMR [ variable | 1.660845021393(49-51) |

The last two digits in parentheses signify the range in which these last digits fall. All searches
were carried out to one part in 1014, Tt is of interest when studying critical behavior to have the



4 PROBLEM 1D: TYPE I CRITICAL BEHAVIOR 4.2 Codes

numbers to high precision; however, it is clear that the number varies between levels already in
the third decimal, so an “overall” critical §* would be about

0* ~ 1.66

for the kink-type initial data (13).

4.2 Codes

In addition to studying two different families of initial data, we also implement two different
computer codes. In addition to an RNPL code using Crank-Nicholson (CN) differencing, we also
use an adaptive mesh-refinement (AMR) algorithm using a leap-frog scheme. We use the CN
code only for constructing Type I critical solutions, whereas we use the AMR code for both
Type I and Type II solutions.

The CN code was generated by modifying two example codes provided for us by the instruc-
tor that solved a) the 1-D wave equation with CN differencing (1-D wave) and b) the massless
scalar field coupled to gravity in the Einstein-Massless-Klein-Gordon system (EMKG). These
were helpful examples to start with, since the EMKG code used RNPL with hand-coded solvers
for the a and a (and also 2M/r) whereas the 1-D wave code used RNPL with CN differencing.
So the RNPL code we implemented is simply a hybrid of both of these two codes (literally, we
copied the EMKG hand-coded parts and the 1-D wave RNPL source, modifying each part slightly
where appropriate). We implemented both families of initial data, (13) and (33), to find Type
I critical solutions that asymptotes to the Bartnik-McKinnon static solution.

We implemented an AMR code mainly to investigate Type I critical solutions. The code
we implemented here was a modification of Choptuik’s AMR leap-frog code that evolved two
scalar fields, coupled in the form of the harmonic map. (The code is actually written to solve
the Einstein-Yang-Mills-Dilaton system, but reduces to the EYM system if we force the dilaton
field to zero and choose an appropriate coupling constant.)

4.3 Critical behavior: Time scaling

The Type I marginally super(sub-)critical solution (i.e. small [p — p*|) follows a pattern in
which it approaches the n = 1 Bartnik-McKinnon solution and stays close to it for a certain
length of central proper time 7'. We can plot this time as a function of how far the solution is
from criticality, i.e. as a function of In |p — p*|. From the figure (1) it is evident that there is a
time scaling law:

T —Anl|p—p|

and we determine the exponent \ to be

A= 0.567

It is clear from the phenomenology that the negativity of the exponent (—A) < 0 in the expres-
sion for T is correct; the smaller |p — p*| is, the longer the solution will be able to sit on the
static solution.

4.4 Bartnik-McKinnon static solution

Following Bartnik and McKinnon [1] we solve the static, spherically symmetric Einstein-Yang-
Mills equations using a shooting technique. With this procedure, we hope to generate the w;
solution (the solution in which w has exactly one zero).



4 PROBLEM 1D: TYPE I CRITICAL BEHAVIOR 4.4 Bartnik-McKinnon static solution

Central Proper Time

25.0 . L
-30.0 -20.0 -10.0 0.0

In(p-p*)

Figure 1: Time scaling for the kink initial data. Regression gives —\ ~ —0.567 for the slope.

We begin with the evolution equations given by Bartnik and McKinnon, equations (3) and
(4) in their paper.

2m 2 1 2\2
and
2 1— 2\2
r? (1 . Tm) w" + [Zm - #] w +(1—w?)w=0 (15)

Then as in our previous solution, we define

3= (16)

and use this to reduce the order of (15)

[2m— (1 —w?)?/r]®+ (1 - w)w

72 (1 2m/r) (17)

o =—

We note that this is completely consistent with our previous equations in a, o, ®, and W.
Further, if we make the substitution

1
2m\ 2
=({1—-— 18
a=(1-2) (15)
then we have
T 1
1\ o
r_
and equation (14) becomes
1\d 1 , 1 -
(1_672)673:?“’ + 551 —w?) (21)



4 PROBLEM 1D: TYPE I CRITICAL BEHAVIOR 4.5 The Shooting Method

Collecting terms and substituting from equation (16), we find

a a® o2 at—1 &2
S (- - = 22
a 2r3 (1—w?)"+ 2r r (22)
and re-arranging terms once more, we arrive at
ad a>-1 1 a® 2
l (o2 + 2 (1-w? 23
a+ 2r r< +2r2( w)) (23)
which is identical with our earlier expression.
Now, using the formal power-series expansion about r = 0,
8
m = 2b%r% + 5 b3 4+ 0(r") (24)
2 3.9, 4.3\ 4 6
w=1+br+{—=b"+-0b")r*+0(°) (25)
10 5
3
& = 2br + (62 + 16b%) % +0(%) (26)

where b € R is the shooting parameter, we can write initial data for r = 0 and r = dr, the first
“integration” step. Thus, for r = 0,

m =20 (27)
w=1 (28)
3=0 (29)

which is, of course, exactly the initial conditions we used in our previous solution.

Given these initial conditions, and with the knowledge that w — —1 as r — oo, we can use
the standard LSODA integrator to generate a solution to the evolution equations, (14), (16), and
(17) for the remaining points in the r domain. Following Bartnik and McKinnon, we look at
r € [0.01,1000].

4.5 The Shooting Method

We wish to use our ability to solve an initial value problem (IV P), with a standard integrator,
namely LSODA, to solve the two-point boundary value problem (BV P)s. Let us define (IV P),,
as the solution to

and let us denote the solution to (IVP), by ym(z), where m is the initial slope at z = zo of
Ym(x). Now, we want the solution to ym(zf) = yr, where y; is the desired boundary value at
xs. If the solution y = y,,,(xy) is thought of as a “trajectory,” then the condition y.,(zs) = yy
corresponds to “hitting” the target. When this occurs, y,,(x) satisfies (BV P)s and hence is
the desired y(z).

To carry out the shooting method, we introduce the error function,
E(m) = ym(zs) — ys (30)

The value of E(m) is the amount by which y., (z ) misses the target value y¢. So, the problem of
solving (BV P), can be viewed as that of finding the root of E(m). Now, since each evaluation
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Figure 2: Yang-Mills potential, w(r), in the Bartnik-McKinnon k£ = 1 Static EYM Solution

of E(m) requires a lot of work, namely integrating (IV P),, from z = x¢ to = zy, it is
important to find the desired root using a method that converges rapidly. The secant method,
then, is ideally suited to our purpose. We simply define the iterative equation

E(mg_1)(mg_1 —my)

Blmr 1) — B(me) (31)

mEp =mg_1 —
which says that the new value of the shooting parameter, my, is just the slope of the secant
line between the previous point (mg_1, E(mg—_1)) and the new point (my, E(my)).

The algorithm then is simple:

1. Set initial conditions at r = dr via (26) and take the first shot using LSODA

2. Compute the error in the first shot and guess at the next b

3. Set initial conditions for the new value of r via (26) and take the next shot using LSODA
4. Compute the error in the shot and use (31) to compute a new value of b
5.

Repeat steps 3. and 4. until the desired tolerance, tol, is reached.

For smoothness, we demand that the new value of the shooting parameter, b, change by no
more than a factor of 10 at each step. And as a test for tolerance, we check to see if

|AD| < |btol] (32)

Using this procedure, for by = —0.453724 with r € [0.01,1000], we find the solution for w
and m shown in figures 2 and 3.

5 Problem le: New Initial Data

It is interesting to investigate the universality of the critical behavior, i.e. which qualitative
features of the phenomenology we see for the initial data (13) are carried over to the situation

10



5 PROBLEM 1E: NEW INITIAL DATA
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Figure 3: Mass profile, m(r), in the Bartnik-McKinnon k£ = 1 Static EYM Solution

with different initial data. Thus it is desirable to come up with a set of initial data that is
not too close to (13) but which is still manageable numerically. That is, it should be smooth,
it should not have any parts which are too “steep”, it should be reasonably localized, and it
should approach one on the “vacuum” states W(r,t) = +1 asymptotically.

From the appearance of the “kink” (13) one is led to a function which is of similar graphical
appearance but which is very different from a functional viewpoint:

W(r;re,d) = — tanh (r%;ro) (33)

It is clear that this 6 cannot be immediately compared to the § in the previous initial data,

-0.5+

Figure 4: The new initial data, W (r;rg,d) = — tanh((r — rg)/4).

11



6 PROBLEM 1F: TYPE II CRITICAL BEHAVIOR

thus we expect a new value for the critical §*. Indeed, we find
0" ~ 3.069
On the other hand, the beauty of critical collapse is its universality, so we do expect the

scaling exponent in the time scaling law to recur even for this fundamentally different set of
initial data. The result can be found in figure (5) The value of —\ = —0.569 is very close to

40.0

Proper Time
w
o
o

30.0

25.0 . .
-30.0 -20.0 -10.0 0.0

In(p-p*)

Figure 5: The time scaling for the tanh initial data. The critical exponent —A ~ —0.569.

the —\ = —0.567 of the kink initial data, and the difference appears to be well within the error
limits; the standard deviation of A from the regression is 0.0018, which already places it within
reach of the kink A\. Thus we have verified universality in these two cases.

6 Problem 1f: Type II Critical Behavior

In the Type Il-regime is where the adaptive code really becomes useful; with our RNPL code we
could not have reproduced more than a few echoes in the discretely self-similar (DSS) solution.

Indeed, with the adaptive code we do observe this characteristic echoing of the solution
on smaller and smaller scales. In figure (6) we see the remnants of the echoes in a late time
profile of 2m/r. Thus we can make a log-plot of the solution and try to estimate the periodicity
through an echoing exponent A:

A~ 0.75

This can be verified by taking the solution and shifting it (in in(r)) by A, then overlaying the
forward edge (still ingoing part) of the pulse with the same part of a copy of the original pulse.
The result (figure 7) supports the estimate of A a2 0.75.

It is clear that we were not able to tap into Type II behavior as much as we had wanted,
but it was interesting to at least scratch the surface. Clearly, there is a rich phenomenology for
Einstein-Yang-Mills systems which could be studied for a longer period of time.

12



A MAPLE FILE

0.6 — —

o
=~
T

2m/r vs. In(r)

02

Figure 6: Scale echoing. We can see around 8 echoes (remnants; see mpegs on webpage for
dynamics.).

A Maple File

This worksheet "hw3/map1e/check.ms" checks the equivalence

of a-dot and a-prime in the equations of motion

3k 3k 3k ok ok ok ok 3k ok 3k ok 3k ok ok ok ok ok ok 3k ok 3k ok 3k ok ok ok 3k ok 3k ok k ok ok 3k ok ok ok ok 3k ok ok ok ok 3k ok 3k ok ok %k ok 3k ok ok %k ok %k Kk k

Define aliases

vV V. V V V V V
H OH B OB O OB

alias(a=a(r,t) ,alpha=alpha(r,t),Phi=Phi(r,t) ,Pi=Pi(r,t) ,w=w(r,t));
Iaa,® m,w

> # Define derivatives for Yang-Mills and geometric variables
> #
> PHIDOT := diff(alpha/a*Pi,r);

pHIDOT = () T _ o7 (57a) +2 (&)
) a a? a

> PIDOT := diff(alpha/a*Phi,r) + alpha*a*w*(1-w"2)/r"2;

D a)d d (2 2% o
PIDOT = (8T:) _a (ara’)+a(ar )+Ozaw(1 ’u])

a? a r2
> ADOT := 2*alpha*Phi*Pi/r;
ADOT = 2227
T
> APRN i= ax((1-272)/(291) + 1/r *(Pi"2 + Phi%2 + (a72/ (26"2)* (1972 "2);

0 w24 P24 l giﬁg_:;%i)i
1—-a + 2 r2
r T

APRM :=a

N =

13



A MAPLE FILE

0.6 —

0.4 —

2m/r

0.2 —

Figure 7: Echo overlay using an estimated A = 0.75. Since overlap is good, A is close to 0.75.

> LPRM := alpha*((a‘2—1)/(2*r) + 1/r*(Pi"2 + Phi~2 - (a~2/(2*%r"2))*(1-w~2)"2));
>
1 2 1— 2\2
1a2-1 7r2+@2_§a( 2w)
LPRM =« | = + r
2 r r

> ADOTPR:=diff (ADOT,r);
(aioz) [ox s oz(aiq))w
T +2 T 5
r r r r

ADOTPR :=2

> APRDOT:=diff (APRM,t);

. 15) 11-a ) r2
APRDOT = <3t a) > + +a (

> # Now do the actual calculation
> #
> check:=simplify (APRDOT-ADOTPR) ;

14



A MAPLE FILE

0 2 3 9 3 3 (0
+4ad (até)r 4aw<atw)+4aw é)tw
0

# and perform necessary substitutions
# of derivatives using the expressions defined above
#

check2:=Simp1ify(subs(diff(Phi,t)=PHIDOT,diff(Pi,t)=PIDUT,diff(a,t)=ADOT,di
ff(a,r)=APRM,diff (alpha,r)=LPRM,diff (w,r)=Phi,diff (w,t)=(alpha/a*Pi),check));
check2 :=0

vVV V V V

15
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