Large Volume Flux Compactifications and Open Strings

Marcus Berg, CoPS, Fysikum, Stockholm

talk available at www.physto.se/~mberg

"Formal" (not directly phenomenological) string theory

"Formal" (not directly phenomenological) string theory

"Real phenomenology"?

"Real phenomenology"?

LHC counting signatures

LHC counting signatures

KKLT1, LGVol: light squarks \Rightarrow squark production \Rightarrow (electric) charge asymmetry G_2 : heavy squarks \Rightarrow gluino production \Rightarrow less charge asymmetry

different MSSM models:

- satisfy (at least some) accelerator constraints
- give WMAP cosmological dark matter relic density

GLAST (launch May 16, 2008): up to 300 GeV

<u>What is the "added value"</u> <u>of string phenomenology?</u> (compared to standard MSSM phenomenology)

First of all: if TeV string scale: radically different!

- long shot, but might keep in mind
- experience so far: difficult to satisfy experimental constraints

Here: string scale >> TeV

string theory gives some effective field theory... but if that's it, so what?

What is the "added value" of string phenomenology?

most of MSSM phenomenology: **severely** restricted parameter space (e.g. start with 105, keep 3)

- restrict flavor violation (beyond SM)
- restrict CP violation (beyond SM)
- renormalizable

<u>Why?</u> Experiment Experiment "Energy desert" (gauge unification) What is the "added value" of string phenomenology?

most of MSSM phenomenology: **severely** restricted parameter space (e.g. start with 105, keep 3)

- restrict flavor violation (beyond SM)
- restrict CP violation (beyond SM)
- renormalizable

<u>Why? (really...)</u> Naturalness Naturalness Naturalness

What is the "added value" of string phenomenology?

bulk of MSSM phenomenology: *severely* restricted parameter space (e.g. 105 to 3)

- restrict flavor violation (beyond SM)
- restrict CP violation (beyond SM)
- renormalizable

remainder of talk: classes of string phenomenologies that predict something?

<u>The KKLT internal space: a Calabi-Yau</u> <u>IIB orientifold with fluxes and warping</u>

The KKLT internal space: a Calabi-Yau IIB orientifold with fluxes and warping

The KKLT internal space: a Calabi-Yau IIB orientifold with fluxes and warping

The KKLT internal space: a Calabi-Yau IIB orientifold with fluxes and warping

closed string (would-be) moduli: S, T_i, U_{α}

$$K = -\ln(S + \bar{S}) - 2\ln\mathcal{V}(T_i + \bar{T}_i) + K^U$$

 $W = W_{\text{flux}} + W_{\text{np}}$ stabilize *S* and *U* (i.e. minimize potential *V* with respect to *S* and *U*)

$$W = W_0 + \sum_i A_i e^{-a_i T_i}$$

<u>The KKLT internal space: a Calabi-Yau</u> <u>IIB orientifold with fluxes and warping</u>

KKLT: external space deSitter

<u>The KKLT internal space: a Calabi-Yau</u> <u>IIB orientifold with fluxes and warping</u>

here: Minkowski external space

closed string moduli potential:

$$V = (\text{terms that vanish as } W_{np} \to 0)$$
$$+e^{K} (G^{\bar{\jmath}i} K_{\bar{\jmath}} K_{i} - 3) |W|^{2}$$

for tree-level *K* from previous slide,

$$G^{\overline{\jmath}i}K_{\overline{\jmath}}K_i = 3 \qquad \Rightarrow \qquad V(T) = 0$$

"no-scale structure"
at supergravity tree-level

closed string moduli potential:

closed string moduli potential : $(\tau_i = \operatorname{Re} T_i)$

$$\frac{V}{e^{K}} = e^{-a\tau} \left(4|A|^2 a\tau e^{-a\tau} \left(\frac{1}{3}a\tau + 1 \right) - 4a\tau |A||W_0| \right)$$

for tree-level K from previous slide, $G^{\overline{\jmath}i}K_{\overline{\jmath}}K_i = 3$

in KKLT, no-scale structure broken by nonperturbative superpotential

closed string moduli potential : $(\tau_i = \operatorname{Re} T_i)$

in KKLT, no-scale structure broken by nonperturbative superpotential

Some drawbacks with original KKLT

closed string moduli potential :
$$(\tau_i = \operatorname{Re} T_i)$$

$$\frac{V}{e^K} = e^{-a\tau} \left(4|A|^2 a\tau e^{-a\tau} (\frac{1}{3}a\tau + 1) - 4a\tau |A| |W_0| \right)$$

- only works for limited range of a, W_0, A
- volume not stabilized big (no "problem", but see later)
- supersymmetry breaking "at the end" (least understood part)
- "two-step stabilization" (S, U, then T) sometimes fails (not algorithmic)

The Large Volume Scenario (LVS)

Balasubramanian, Berglund, Conlon, Quevedo '05

The Large Volume Scenario (LVS)

Balasubramanian, Berglund, Conlon, Quevedo '05

'02

Truncation problem: it typically makes no sense to attempt to "improve" any leading-order string model by string/ quantum corrections

LVS is one case where this intuition may fail (under investigation!)

$$\{T_i\} \rightarrow \{T_b\}, \{T_s\}$$
special
Calabi-Yau
$$K = K_{\text{KKLT}} + \xi \frac{S_1^{3/2}}{\mathcal{V}} \qquad (\tau_i = \text{Re} T_i)$$

$$W = W_{\text{KKLT}} \qquad (\text{higher derivative})$$
correction
$$\text{Becker, Becker, Haack, Louis}$$

LVS moduli stabilization

change variables $(\tau_b, \tau_s) \rightarrow (\mathcal{V}, \tau_s)$ variables $(T_{\rm b}, T_{\rm s}) \rightarrow (V, \tau_{\rm s})$ $X = Ae^{-a\tau_{\rm s}}$ $V = (\dots)\frac{X^2}{\mathcal{V}} + (\dots)\frac{X}{\mathcal{V}^2} + (\dots)\frac{\xi}{\mathcal{V}^3}$ $\frac{\partial V}{\partial \mathcal{V}} = 0 \qquad \Rightarrow \qquad \mathcal{V} = \frac{f(\tau_{\rm s})}{X}$ $(\tau_i = \operatorname{Re} T_i)$ $\frac{\partial V}{\partial \tau_{\rm s}} = 0 \qquad \Rightarrow \qquad X = \frac{g(\tau_{\rm s})}{\mathcal{V}}$ $\Rightarrow \quad f(\tau_{\rm s}) = g(\tau_{\rm s})$ $\stackrel{a\tau_{\rm s}\gg1}{\Longrightarrow} \quad \tau_{\rm s}\sim \xi^{2/3}$ dial: $\mathcal{V} \sim 10^{15} \ell_{\odot}^{6}$ $\Rightarrow \quad \mathcal{V} \sim e^{a \tau_{\rm s}}$

Why $\mathcal{V} \sim 10^{15} \ell_{\rm s}^6$?

Conlon, Quevedo, Suruliz '05

- 1. Why is big good?
 - α' (inverse volume) expansion under control
 - "two-step" integrating out becomes algorithmic
 - matter fields: $K(\phi, \bar{\phi}) \sim \mathcal{V}^p k(\phi, \bar{\phi})$
 - soft supersymmetry breaking terms: simplifications

Sample soft terms: gaugino masses

Conlon, Abdussalam, Quevedo, Suruliz '06

Assume MSSM

$$\begin{split} M_{a} &= \frac{1}{2 \operatorname{Re} f_{a}} \sum_{I} F^{I} \partial_{I} f_{a} \\ F^{\tau_{s}} &= e^{K/2} (G^{\bar{s}s} \partial_{\bar{s}} \bar{W} + (G^{\bar{s}s} K_{\bar{s}} + G^{\bar{b}s} K_{\bar{b}}) \bar{W}) \\ &= 2\tau_{s} e^{K/2} \bar{W}_{0} \left(\left(1 - \frac{3}{4a\tau_{s}} \right) - 1 + \ldots \right) \\ M_{s} | &\sim \frac{m_{3/2}}{\ln(M_{P}/m_{3/2})} \left(1 + \frac{(\ldots)}{\ln(M_{P}/m_{3/2})} + \ldots \right) \end{split}$$

Gaugino masses suppressed by factor of 30 compared to gravitino mass

"Mirror mediation"

Conlon '07

(cf. heterotic model-building) Kaplunovsky, Louis '93

Flavor structure from only one kind of modulus (here U)

soft scalar masses
$$m_{\alpha\beta}^2 = m^2 \delta_{\alpha\beta} + \frac{f_{\alpha\beta}(U)}{M} + \mathcal{O}\left(\frac{1}{M^2}\right)$$

- \bullet New nonrenormalizable couplings at each mass threshold M
- Hard to calculate $f_{\alpha\beta}(U)$ in concrete models

Gaugino masses suppressed by factor of 30 compared to gravitino mass

Consistency conditions

M.B., Haack, Pajer '07, + work in progress

$$\Delta K_{\alpha'} : \Delta K_{g_{\rm s}} \sim \alpha'^3 : g_s^2 \alpha'^2$$

dimensional analysis:

$$\Delta K_{\alpha'} \sim g_{\rm s}^{-3/2} \mathcal{V}^{-1}$$
$$\Delta K_{g_{\rm s}} \sim g_{\rm s} \mathcal{V}^{-2/3}$$

cancellation (to be shown):

$$\Delta V_{\alpha'} \sim g_{\rm s}^{-1/2} \mathcal{V}^{-3}$$
$$\Delta V_{g_{\rm s}} \sim g_{\rm s} \mathcal{V}^{-3}$$

should consider D-brane corrections in LVS!

D-Brane Corrections to Kähler potential

M.B., Haack, Körs, '05

D-Brane Corrections to Kähler potential

M.B., Haack, Körs, '05

for "Swiss cheese" Calabi-Yaus, loop corrections negligible ...can we trust these estimates?

D-brane corrections in flux <u>compactifications?</u> M.B., Haack, Körs '04 Giddings, Maharana '05 Baumann, Dymarsky, Klebanov, Maldacena, McAllister, Murugan '06

gauge coupling corrections ~ eigenfunction of Laplacian – claim that this is **open/closed duality**

> • generalize to warped deformed conifold (!) with general holomorphic D7-brane embedding specified by integers p_i

$$A = A_0 \left(\frac{\mu^P - \prod_{i=1}^4 w_i^{p_i}}{\mu^P} \right)^{1/N_{\text{D7}}} \qquad P = \sum_{i=1}^4 p_i$$

D-brane corrections in flux <u>compactifications?</u> M.B., Haack, Körs '04 Giddings, Maharana '05 Baumann, Dymarsky, Klebanov, Maldacena, McAllister, Murugan '06

gauge coupling corrections ~ eigenfunction of Laplacian – claim that this is **open/closed duality**

> • generalize to warped deformed conifold (!) with general holomorphic D7-brane embedding specified by integers p_i

much work left to do!

Summary

- Variants of KKLT can be surprisingly controllable
- Checks must be performed whole classes can disappear
- Existing results, if correct, are potentially interesting for LHC counting signatures and SUSY dark matter
- With more details, would be more interesting...
- Development about loop corrections in very general backgrounds interesting in its own right

<u>Outlook</u>

..., Dine, Seiberg, Thomas '07 Randall '07

- What about nonrenormalizable operators? "BMSSM"?
- What about LVS for other Calabi-Yaus?
- Check "Green's function method" in simpler (!) cases
- Cosmology very interesting but even trickier
 - brane inflation (time-dependence?)
 - dark energy? (need uplift details...)