Introduction to

 OrientifoldsMarcus Berg, CoPS, Fysikum

Talk posted at
http://www.physto.se/~mberg

Overview

- Orientability in QFT
- Tadpoles and anomalies (QFT, strings)
- What is an orientifold plane?
- Applications: particle physics, cosmology
- Brief statement about condensed matter

Will try to argue that this line of argument is not specific to string theory as we know it (but is specific to theories of extended objects!)

Orientability in Quantum Field Theory: spinors

Orientability in Quantum Field Theory: spinors

Orientability in Quantum Field Theory: spinors

$$
S_{\Lambda} \gamma^{\mu} S_{\Lambda}^{-1}=\Lambda_{\nu}{ }^{\mu} \gamma^{\nu}
$$

- Orientation preserving Lorentz transformation $\Lambda_{\nu}{ }^{\mu}$: even number of gamma matrices, e.g. $S_{R(2 \pi)}$
- Orientation reversing Lorentz transformation $\Lambda_{\nu}{ }^{\mu}$: odd number of gamma matrices, e.g. $S_{P_{k}}$
2π rotation

$$
\begin{aligned}
S_{R(2 \pi)}|\psi\rangle & =-|\psi\rangle \\
\left(S_{R(2 \pi)}\right)^{2}|\psi\rangle & =+|\psi\rangle
\end{aligned}
$$

Parity $S_{P}|\psi\rangle=p|\psi\rangle$
Parity operation $\left(S_{P}\right)^{2}|\psi\rangle=p^{2}|\psi\rangle \quad p^{2}=$?

Orientability in Quantum Field Theory: spinors

Lesson: nothing is really "obvious"when it comes to spinors (avoid unnecessary assumptions)

In particular, parity does not have to square to one.

$$
S_{P}^{2}= \pm 1
$$

e.g. M.B., DeWitt-Morette, Gwo \& Kramer '00
(one among many)

$$
\binom{\psi_{\mathrm{L}}}{0}+\binom{0}{\psi_{\mathrm{R}}}=\psi_{\text {Dirac }}
$$

Perturbation theory anomalies

Ex: gauge fields, group G, coupled to left-handed fermions ψ_{L}

SM:
$S U(2): \mathcal{A}$ vanishes for any number of fermions

$$
U(1): \mathcal{A}=3 \cdot\left(\frac{2}{3}-\frac{1}{3}\right)+(0-1)=0
$$

Perturbation theory anomalies

Ex: gauge fields, group G, coupled to left-handed fermions ψ_{L}

Peskin \& Schroeder, p. 680

SM:
$S U(2): \mathcal{A}$ vanishes for any number of fermions $U(1): \mathcal{A}=3 \cdot\left(\frac{2}{3}-\frac{1}{3}\right)+(0-1)=0$
G has potential anomalies if (except $U(1)): \quad \pi_{5}(G) \neq 0$

Orientability and extended objects

Ex. one-dimensional objects: strings!
Worldsheet $=$ surface swept out by string in time

- Unorientable string worldsheets?
would expect similar issues for "more extended" objects, like membranes ... more some day?

Orientability and open strings

Sagnotti '87
Gimon, Polchinski '96

Orientability and open strings

Sagnotti '87
Gimon, Polchinski '96

Möbius strip

Orientability and closed strings

or:

Klein bottle

More tractable:
Involutions of the (worldsheet) torus

Make a cylinder from a torus:

Identify under $I(z)=1-\bar{z}$

fixed lines $=$ boundaries

Involutions of the (worldsheet) torus

Make a Möbius strip:
$\tau=\frac{1}{2}+i t, \quad t \in \mathbb{R}$

Identify under $I(z)=1-\bar{z}$

fixed lines $=$ boundaries

Involutions of the (worldsheet) torus

$$
\tau=\frac{1}{2}+i t, \quad t \in \mathbb{R}
$$

e.g. Angelantonj, Sagnotti '02

Indeed, this only has one boundary, and left and right change as we go up

Involutions of the (worldsheet) torus

$$
\tau=\frac{1}{2}+i t, \quad t \in \mathbb{R}
$$

marked point
(think: worldsheet operator)

Indeed, this only has one boundary, and left and right change as we go up

$$
\text { now: } \quad(z, \tau) \xrightarrow{S}\left(\frac{z}{\tau},-\frac{1}{\tau}\right)
$$

The "crosscap"

The "crosscap"

modular transformation \Rightarrow
$\pi / t=: s$

real projective plane

Topology I (rubber)

Möbius strip

Cylinder (annulus)

Klein bottle
organized by
$\chi=2-2 h-b-c$
boundaries

S-matrix of unoriented strings

weighted by $g_{\mathrm{s}}^{-\chi}$!

How do these "unoriented string loop amplitudes" contribute to the string S-matrix; what is the one-loop effective action?

$$
\text { e.g. } \frac{1}{g_{\mathrm{YM}}^{2}(\phi)} \operatorname{tr} F^{2}
$$

First question: interactions of open string endpoints

String endpoints and gauge charges

Chan, Paton ‘69

spacetime momentum
Oriented open string state:

number of excited oscillators

(think of quark in fundamental $\quad N_{3}=1$ representation of gauge group)

String endpoints and gauge charges

Parity of string states without endpoints: phase

$$
\begin{aligned}
\Omega|N ; k\rangle=\omega_{N}|N ; k\rangle \quad \omega_{N} & =(-1)^{1+\alpha^{\prime} m^{2}} \\
& \text { "Furry's theorem" }
\end{aligned}
$$

- Important: parity ω_{N} preserved by interactions

Parity of string states with endpoints: same phase?

$$
\Omega|N ; k ; i j\rangle=\omega_{N}|N ; k ; j i\rangle \quad ?
$$

Not necessarily, can even move around: matrix phases

$$
\Omega|N ; k ; i j\rangle=\omega_{N} \gamma_{j j^{\prime}}\left|N ; k ; j^{\prime} i^{\prime}\right\rangle \gamma_{i^{\prime} i}^{-1}
$$

Gauge group from parity constraint

we saw: $\quad \Omega|N ; k ; i j\rangle=\omega_{N} \gamma_{j j^{\prime}}\left|N ; k ; j^{\prime} i^{\prime}\right\rangle \gamma_{i^{\prime} i}^{-1} \quad i, j=1 \ldots n$

$$
\text { if we restrict to } \omega=+1 \quad \Rightarrow \quad \gamma^{\mathrm{T}}= \pm \gamma
$$

Gauge algebra of open string endpoints: antisymmetric or symmetric matrices

Will now argue: in 10 dimensions, n is uniquely fixed!
First step to S-matrix: partition function (0-point amplitude)

Partition functions

Hamiltonian

String partition functions $Z(q) \propto \operatorname{Tr}\left(q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right)$
Ex: bosonic string

$$
\begin{aligned}
\sum_{n=0}^{\infty} q^{n N} & =\frac{1}{1-q^{N}} \\
\prod_{N=0}^{\infty}\left(\sum_{n=0}^{\infty} q^{n N}\right) & =\frac{1}{\prod_{N=0}^{\infty}\left(1-q^{N}\right)}=\frac{1}{q^{-1 / 24} \eta(q)}
\end{aligned}
$$

Dedekind η function

Partition functions

String partition functions $Z(q) \propto \operatorname{Tr}\left(q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right)$
Ex: superstring

$$
=: Z_{\beta}^{\alpha}(\tau)
$$

Polchinski Vol 2, p. 32

Tadpoles

Length of cylinder

$$
\pi / t=: s
$$

Tadpoles

$$
\begin{array}{r}
Z_{C, 0} \propto n^{2} \int_{0}^{\infty} d s \underbrace{\eta(i s / \pi)^{-8}\left[Z_{0}^{0}(i s / \pi)^{4}-Z_{1}^{0}(i s / \pi)^{4}\right]}_{\stackrel{s \rightarrow \infty}{\longrightarrow} 16+\mathcal{O}\left(e^{-2 s}\right)} \\
\frac{1}{p^{2}}=\int_{0}^{\infty} d s e^{-s p^{2}}
\end{array}
$$

factorization:

"Tadpole"

Tadpoles

$$
Z_{C, 0} \propto \searrow_{n^{2}}
$$

" n D-branes emitting and reabsorbing closed strings"

Tadpoles

$$
\begin{array}{r}
S O(n) \\
Z_{C, 0} \propto \searrow_{n^{2}} \int_{0}^{\infty} d s \underbrace{\underbrace{}_{p^{2}}=\int_{0}^{\infty} d s e^{-s p^{2}}}_{\stackrel{s \rightarrow \infty}{\longrightarrow} 16+\mathcal{O}\left(e^{-2 s}\right)}
\end{array}
$$

factorization:

$$
\frac{1}{p^{2}} \rightarrow \frac{1}{0}=\infty
$$

Unoriented partition functions

Closed strings symmetric w.r.t. leftand right-moving oscillations
Can project onto states with e.g. $\Omega=+1$
cf. left-handed electron:

$$
\begin{aligned}
Z(q) & \propto \operatorname{Tr}\left(q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right) \\
& \rightarrow \operatorname{Tr}\left(\frac{1+\Omega}{2} q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right)+\frac{1}{2} \operatorname{Tr}\left(\Omega q^{L_{0}} \bar{q}^{\tilde{L}_{0}}\right)
\end{aligned}
$$

noun: "An orientifold (theory)" verb: "To orientifold a theory"

Tadpoles

$$
\begin{aligned}
& Z_{M, 1} \xrightarrow{s \rightarrow \infty} \rightarrow 2^{5} \cdot 2 n \int_{0}^{\infty} d s\left(16+\mathcal{O}\left(e^{-2 s}\right)\right) \\
& \operatorname{Tr}\left(\Omega q^{L_{0}} \ldots\right) \\
& \text { real projective plane }
\end{aligned}
$$

For SO, comes with different sign (minus) than previous (cylinder) amplitude!

Tadpole cancellation

$$
\begin{aligned}
Z_{C, 0} & \propto n^{2} \int_{0}^{\infty} d s \underbrace{\eta(i s / \pi)^{-8}\left[Z_{0}^{0}(i s / \pi)^{4}-Z_{1}^{0}(i s / \pi)^{4}\right]}_{\stackrel{s \rightarrow \infty}{ } 16+\mathcal{O}\left(e^{-2 s}\right)} \\
Z_{M, 1} & \rightarrow \pm 2^{5} \cdot 2 n \int_{0}^{\infty} d s\left(16+\mathcal{O}\left(e^{-2 s}\right)\right) \\
Z_{K, 0} & \rightarrow 2^{10} \int_{0}^{\infty} d s\left(16+\mathcal{O}\left(e^{-2 s}\right)\right)
\end{aligned}
$$

Total coefficient of divergence:

$$
n^{2}+2^{10} \pm 2^{5} \cdot 2 n=(n \pm 32)^{2}
$$

Tadpole cancellation

Divergences, schematically:

$$
=(\Omega)+\left(\begin{array}{l}
=0
\end{array} \quad \begin{array}{l}
\text { for } \\
S O(32)
\end{array}\right.
$$

Tadpole cancellation

Note that for oriented open strings, we had no chance!

Tadpole cancellation and anomalies

e.g. Green-Schwarz-Witten, vol. 2, p. 148

if reducible, can cancel against lower traces involving other fields (Chern-Simons terms)

$$
\operatorname{Tr}_{\mathrm{a}}\left(t^{6}\right)=(n-32) \operatorname{Tr}_{\mathrm{v}}\left(t^{6}\right)+15 \operatorname{Tr}_{\mathrm{v}}\left(t^{2}\right) \operatorname{Tr}_{\mathrm{v}}\left(t^{4}\right)
$$

$S O(32)$ here too! What is going on?

Tadpole cancellation \Rightarrow anomaly cancellation!

Chern-Simons cancellation terms come from different degeneration limits of a single string diagram

tadpole cancellation implies even more in dimensions below $10 \ldots$.... "twisted tadpole cancellation": "K-Theory"

Witten '98

So far: worldsheet parity: "everywhere in spacetime" is that all there is to orientifold geometry?

T-Duality

Ex: boson on a circle,
Z has symmetry:

Momentum
in compact direction
(quantized!)

T-Duality

Take one embedding coordinate (= map worldsheet to 1D):

$$
X(z, \bar{z})=X_{L}(z)+X_{R}(\bar{z})
$$

$$
\begin{align*}
p_{\mathrm{L}} & =\frac{n}{R}+\frac{w R}{\alpha^{\prime}} \\
p_{\mathrm{R}} & =\frac{n}{R}-\frac{w R}{\alpha^{\prime}}
\end{align*}
$$

T-dual: $\quad X^{\prime}(z, \bar{z})=X_{L}(z)-X_{R}(\bar{z})$
Same theory in another variable!

Worldsheet parity / spacetime parity

now:
$X^{\prime}(z, \bar{z})=X_{L}(z)-X_{R}(\bar{z})$
means the "T-dual worldsheet parity" acts as

$$
\Omega^{\prime}: \quad X^{\prime}(z, \bar{z}) \longleftrightarrow X^{\prime}(\bar{z}, z)
$$

so in the T-dual theory

$$
\Omega^{\prime}=\Omega P
$$

also: Hassan '99
Def: orientifold plane in spacetime $=$ fixed locus of Ω^{\prime}

Worldsheet parity / spacetime parity

now:
$X^{\prime}(z, \bar{z})=X_{L}(z)-X_{R}(\bar{z})$
means the "T-dual worldsheet parity" acts as

$$
\Omega^{\prime}: \quad X^{\prime}(z, \bar{z}) \longleftrightarrow-X^{\prime}(\bar{z}, z)
$$

so in the T-dual theory

$$
\Omega^{\prime}=\Omega P
$$

Def: orientifold plane in spacetime $=$ fixed locus of Ω^{\prime}

> in other words, not just "O9-planes", but also "O8-planes", "O7-planes", ...

What is an orientifold plane?

Well, what does "what" mean?

Effective descriptions
Ex: Elementary mechanics
 Angular momentum effective potential

Effective descriptions: D-branes

- Logic: effective descriptions for each probe, each parameter range
- For extended probes, there may not be a simple description in terms of ordinary geometry!

The Dp-brane potential Polchinski, Vol.2, p. 157

$\Longrightarrow V(\phi)$

Gauge theory on D-brane: interpret moduli space geometrically
Orientifold theories: full D-brane $V_{\text {eff }}$ not known
(typically only minimally supersymmetric)

Effective descriptions: D-branes

D-branes have tension (energy density)
$N \gg 1$ D-branes \Rightarrow appreciable gravitational field
Then, makes sense to ask about Dp-brane metric (any p)

Effective descriptions: D-branes

D-branes have tension (energy density)
$N \gg 1$ D-branes \Rightarrow appreciable gravitational field
Then, makes sense to ask about Dp-brane metric (any p)

Point: for some extended objects, several tried and tested effective descriptions exist

Effective descriptions: O-planes themselves

Potential? (don't move!)
Metric? (can't put arbitrarily many!)

D2-brane probes near an O6-plane:
Atiyah-Hitchin metric!
\sim moduli space of gauge theory on D2-brane

Atiyah-Hitchin metric

Bianchi IX:

$$
\begin{aligned}
b c & =: w_{1}, c a=: w_{2}, a b=: w_{3} \\
w_{3}(t) & =-\frac{\pi}{6}\left(E_{2}(t)+\vartheta_{3}^{4}(t)+\vartheta_{4}^{4}(t)\right), \ldots \\
t & \rightarrow 0 \Longrightarrow \text { Taub-NUT of mass }-1
\end{aligned}
$$

- Metric can be obtained from Toda field equation
- Not really "the orientifold metric" (only O6 probed by D2)

Negative Tension in Quantum Gravity?

Ford '97

- Negative energy density is generically hard to make sense of in gravitational theories (cf. "Ford criterion")
- Seems to work here because there are D-branes (positive tension) "somewhere else"
- "Phenomenological" approach sometimes not very meaningful here, need full string theory

Summary so far

- Orientifold theories are obtained from theories with some orientation-reversing symmetry (e.g. closed strings)
- Tadpole cancellation is a powerful constraint on these theories
- It implies anomaly cancellation (and more)

- Total charge and tension cancelled between D-branes and O-planes

$$
\Omega-+(-=0
$$

Now: a few applications

Application I: MSSM orientifolds

Model-building: simplest D-brane models never contain only three leptonic doublets

Orientifolds do!

Application II: "KKLT" orientifold

Blumenhagen, Moster, Plauschinn, Nov 21, '07 nontrivial real slices through complex manifolds, e.g. quintic

$$
z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}+z_{5}^{5}=c
$$

oriented strings

unoriented strings
cancelled tension $=$ no cosmological constant at tree level! ("no-scale model")

Application III: Cosmological singularity in string theory

- Many attempts at modelling very early universe in simple string models
- Most run into problems
e.g. Horowitz, Polchinski '02
- Lorentzian orientifolds seem promising Cornalba, Costa, Kounnas '02 Cornalba, Costa '03
non-orientifolds

Future work: Green's function method

loop amplitudes in non-toroidal orientifolds

$$
i^{i_{n_{1}}}{s_{m_{l_{e}}}}_{m_{m_{0 d_{e}}}}
$$

Sum over eigenfunctions of Laplacian, integrate inflaton $\Rightarrow V_{\text {eff }}$ of D-brane probe

- Has been done for conifold (cone over $T^{1,1}$)
- Compact case: K3 manifold?

Atiyah-Hitchin?

Condensed matter | "Applied string theory"

(several attempts in the past)
here
Conductivity
Holography (extensions of AdS/CFT)

(e.g. graphene)

Prerequisite: my previous KoF talk on AdS/CFT!

Ohm's law at strong coupling?

Hartnoll, Kovtun, Mueller, Sachdev '07

Hartnoll, Herzog '07
Dyonic black hole in AdS_{4} $\}[$ AdS/CFT duality
$2+1$ CFT with charge density and background magnetic field

S duality acting on conductivity

$$
\sigma \rightarrow-\frac{1}{\sigma}
$$

Underlying R-symmetry: $S O(8)$

History: symmetry reduction in AdS/CFT

In AdS/CFT (and more generally):

- Start with maximal symmetry (SUSY, conformal, ...)
- Find various ways to reduce it (e.g. Calabi-Yau)
"geometrize" symmetries of boundary theory (e.g. R-symmetry)

$$
\text { e.g. } A d S_{5} \times S^{5} \quad(S O(6))
$$

Symmetry reduction in AdS/CFT

In AdS/CFT (and more generally):

- Start with maximal symmetry (SUSY, conformal, ...)
- Find various ways to reduce it (e.g. Calabi-Yau)

Fayyazuddin and Spalinski '98
Orientifold the extra dimensions
1/N expansion involves nonorientable surfaces (odd powers of $1 / \mathrm{N}$!)

Like this, could e.g. orientifold the $3+1$ dyonic black hole times 7 -sphere

Summary

- Orientifold theories are obtained from theories with some orientation-reversing symmetry (e.g. closed strings)
- Tadpole cancellation is a powerful constraint on these theories
- It implies anomaly cancellation (and more)
- Cancelling tensions gives "no-scale" model at string tree-level
- It might be interesting to symmetry-reduce existing condensed matter "applications"

Summary

Orientifolds are interesting
... and there is much left to be understood!

